A Real-Time Insulin Injection System

  • Mwaffaq Otoom
  • Hussam Alshraideh
  • Hisham M. Almasaeid
  • Diego López-de-Ipiña
  • José Bravo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8277)


We develop a prototype for real-time blood sugar control based upon the hypothesis that there is a medical challenge in determining the exact, real-time insulin dose. Our system controls blood sugar by observing the blood sugar level and automatically determining the appropriate insulin dose based on patient’s historical data all in real time. At the heart of our system is an algorithm that determines the appropriate insulin dose. Our algorithm consists of two phases. In the first phase, the algorithm identifies the insulin dose offline using a Markov Process based model. In the other phase, it recursively trains the web hosted Markov model to adapt to different human bodies’ responsiveness.


Diabetes Insulin Management Markov Processes Web Management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akematsu, Y., Tsuji, M.: Economic effect of eHealth: Focusing on the reduction of days spent for treatment. In: 11th International Conference on e-Health Networking, Applications and Services, Healthcom 2009 (2009)Google Scholar
  2. 2.
    Alasaarela, E., Nemana, R., DeMello, S.: Drivers and challenges of wireless solutions in future healthcare. In: International Conference on eHealth, Telemedicine, and Social MedicineGoogle Scholar
  3. 3.
    Andrianasy, F., Milgram, M.: Applying neural networks to adjust insulin-pump doses. In: Proceedings of the 1997 IEEE Workshop Neural Networks for Signal Processing VII (1997)Google Scholar
  4. 4.
    Campos-Cornejo, F., Campos-Delgado, D.U.: Self-Tuning Insulin Dosing Algorithm for Glucose Regulation in Type 1 Diabetic Patients. In: Pan American Health Care Exchanges, PAHCE 2009 (2009)Google Scholar
  5. 5.
    Jordanova, M.M.: eHealth: from space medicine to civil healthcare. In: Proceedings of 2nd International Conference on Recent Advances in Space Technologies, RAST 2005 (2005)Google Scholar
  6. 6.
    King, A.B., Clark, D., Wolfe, G.S.: How much do I give? Dose estimation formulas for once-nightly insulin glargine and premeal insulin lispro in type 1 diabetes mellitus. Endocrine Practice 18(3), 382–386 (2012)CrossRefGoogle Scholar
  7. 7.
    Klonoff, D.C., Buse, J.B., Nielsen, L.L., Guan, X., Bowlus, C.L., Holcombe, J.H., Maggs, D.G.: Exenatide effects on diabetes, obesity, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes treated for at least 3 years. Current Medical Research and Opinion 24(1), 275–286 (2007)Google Scholar
  8. 8.
    Wang, N., Kang, G.: A monitoring system for type 2 diabetes mellitus. In: IEEE 14th International Conference on e-Health Networking, Applications and Service (Healthcom)Google Scholar
  9. 9.
    Rizza, R.A., Mandarino, L.J., Gerich, J.E.: Dose-response characteristics for effects of insulin on production and utilization of glucose in man. American Journal of Physiology-Endocrinology and Metabolism 240(6), E630–E639 (1981)Google Scholar
  10. 10.
    Ross, S.M.: Introduction to Probability Models, 10th edn. Elsevier AP (2010)Google Scholar
  11. 11.
    Shimauchi, T., Kugai, N., Nagata, N., Takatani, O.: Microcomputer-aided insulin dose determination in intensified conventional insulin therapy. IEEE Transactions on Biomedical Engineering (2013)Google Scholar
  12. 12.
    Stein, O.S., Eirik, A., Ragnar, M.J., Fred, G.: Statistical Modeling of Aggregated Lifestyle and Blood Glucose Data in Type 1 Diabetes Patients. In: Second International Conference on eHealth, Telemedicine, and Social Medicine (2010)Google Scholar
  13. 13.
    Taha, H.A.: Operations Research: An Introduction, 9th edn. Prentice Hall, New Jersey (2010)Google Scholar
  14. 14.
    Pickup, J.C.: Insulin-pump therapy for type 1 diabetes mellitus. New England Journal of Medicine 366(17), 1616–1624 (2012)CrossRefGoogle Scholar
  15. 15.
  16. 16.
    Vasilyeva, E., Pechenizkiy, M., Puuronen, S.: Towards the framework of adaptive user interfaces for eHealth. In: Proceedings of 18th IEEE Symposium on Computer-Based Medical Systems (2005)Google Scholar
  17. 17.
    Wallace, T.M., Matthews, D.R.: The assessment of insulin resistance in man. Diabetic Medicine 19(7), 527–534 (2002)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mwaffaq Otoom
    • 1
  • Hussam Alshraideh
    • 2
  • Hisham M. Almasaeid
    • 1
  • Diego López-de-Ipiña
    • 3
  • José Bravo
    • 4
  1. 1.Yarmouk UniversityJordan
  2. 2.Jordan University of Science and TechnologyJordan
  3. 3.University of DeustoSpain
  4. 4.Castilla-La Mancha UniversitySpain

Personalised recommendations