Skip to main content

Self-Healing of Byzantine Faults

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8255))

Abstract

Recent years have seen significant interest in designing networks that are self-healing in the sense that they can automatically recover from adversarial attacks. Previous work shows that it is possible for a network to automatically recover, even when an adversary repeatedly deletes nodes in the network. However, there have not yet been any algorithms that self-heal in the case where an adversary takes over nodes in the network. In this paper, we address this gap.

In particular, we describe a communication network over n nodes that ensures the following properties, even when an adversary controls up to t ≤ (1/8 − ε)n nodes, for any non-negative ε. First, the network provides a point-to-point communication with bandwidth and latency costs that are asymptotically optimal. Second, the expected total number of message corruptions is O(t(log* n)2) before the adversarially controlled nodes are effectively quarantined so that they cause no more corruptions. Empirical results show that our algorithm can reduce bandwidth cost by up to a factor of 70.

This research is partially supported by NSF grants: CISE-1117985 and CNS-1017509.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boman, I., Saia, J., Abdallah, C.T., Schamiloglu, E.: Brief announcement: Self-healing algorithms for reconfigurable networks. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 563–565. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Saia, J., Trehan, A.: Picking up the pieces: Self-healing in reconfigurable networks. In: IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2008, pp. 1–12 (2008)

    Google Scholar 

  3. Hayes, T., Rustagi, N., Saia, J., Trehan, A.: The forgiving tree: a self-healing distributed data structure. In: PODC 2008, pp. 203–212 (2008)

    Google Scholar 

  4. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. In: PODC 2009, pp. 121–130 (2009)

    Google Scholar 

  5. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In: PODC 2011, pp. 301–310 (2011)

    Google Scholar 

  6. Das Sarma, A., Trehan, A.: Edge-preserving self-healing: keeping network backbones densely connected. In: 2012 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 226–231 (2012)

    Google Scholar 

  7. Fiat, A., Saia, J.: Censorship resistant peer-to-peer networks. Theory of Computing 3(1), 1–23 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hildrum, K., Kubiatowicz, J.D.: Asymptotically efficient approaches to fault-tolerance in peer-to-peer networks. In: Fich, F.E. (ed.) DISC 2003. LNCS, vol. 2848, pp. 321–336. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Naor, M., Wieder, U.: A simple fault tolerant distributed hash table. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 88–97. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Scheideler, C.: How to spread adversarial nodes? rotate! In: STOC 2005 (2005) 704–713

    Google Scholar 

  11. Fiat, A., Saia, J., Young, M.: Making chord robust to byzantine attacks. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 803–814. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Awerbuch, B., Scheideler, C.: Towards a scalable and robust dht. Theory of Computing Systems 45(2), 234–260 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. King, V., Lonargan, S., Saia, J., Trehan, A.: Load balanced scalable byzantine agreement through quorum building, with full information. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.) ICDCN 2011. LNCS, vol. 6522, pp. 203–214. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  14. Frisanco, T.: Optimal spare capacity design for various protection switching methods in atm networks. In: ICC 1997 Montreal, vol. 1, pp. 293–298 (1997)

    Google Scholar 

  15. Iraschko, R., MacGregor, M., Grover, W.: Optimal capacity placement for path restoration in stm or atm mesh-survivable networks. IEEE/ACM Transactions on Networking 6(3), 325–336 (1998)

    Article  Google Scholar 

  16. Murakami, K., Kim, H.: Comparative study on restoration schemes of survivable atm networks. In: INFOCOM 1997, vol. 1, pp. 345–352 (1997)

    Google Scholar 

  17. Van Caenegem, B., Wauters, N., Demeester, P.: Spare capacity assignment for different restoration strategies in mesh survivable networks. In: Communications, ICC 1997 Montreal, vol. 1, pp. 288–292 (1997)

    Google Scholar 

  18. Xiong, Y., Mason, L.: Restoration strategies and spare capacity requirements in self-healing atm networks. IEEE/ACM Transactions on Networking 7(1), 98–110 (1999)

    Article  Google Scholar 

  19. Saia, J., Young, M.: Reducing communication costs in robust peer-to-peer networks. Information Processing Letters 106(4), 152–158 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Young, M., Kate, A., Goldberg, I., Karsten, M.: Practical robust communication in dhts tolerating a byzantine adversary. In: ICDCS 2010, pp. 263–272 (2010)

    Google Scholar 

  21. Datar, M.: Butterflies and peer-to-peer networks. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 310–322. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Young, M., Kate, A., Goldberg, I., Karsten, M.: Towards practical communication in byzantine-resistant dhts. IEEE/ACM Transactions on Networking 21(1), 190–203 (2013)

    Article  Google Scholar 

  23. Kate, A., Goldberg, I.: Distributed key generation for the internet. In: ICDCS 2009, pp. 119–128 (2009)

    Google Scholar 

  24. Fiat, A., Saia, J.: Censorship resistant peer-to-peer content addressable networks. In: SODA 2002, pp. 94–103 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Knockel, J., Saad, G., Saia, J. (2013). Self-Healing of Byzantine Faults. In: Higashino, T., Katayama, Y., Masuzawa, T., Potop-Butucaru, M., Yamashita, M. (eds) Stabilization, Safety, and Security of Distributed Systems. SSS 2013. Lecture Notes in Computer Science, vol 8255. Springer, Cham. https://doi.org/10.1007/978-3-319-03089-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03089-0_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03088-3

  • Online ISBN: 978-3-319-03089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics