Skip to main content

Multisite Mechanisms for Ultrasensitivity in Signal Transduction

  • Chapter
  • First Online:
Nonautonomous Dynamical Systems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2102))

Abstract

One of the key aspects in the study of cellular communication is understanding how cells receive a continuous input and transform it into a discrete, all-or-none output. Such so-called ultrasensitive dose responses can also be used in a variety of other contexts, from the efficient transport of oxygen in the blood to the regulation of the cell cycle and gene expression. This chapter provides a self contained mathematical review of the most important molecular models of ultrasensitivity in the literature, with an emphasis on mechanisms involving multisite modifications. The models described include two deeply influential systems based on allosteric behavior, the MWC and the KNF models. Also included is a description of more recent work by the author and colleagues of novel mechanisms using alternative hypotheses to create ultrasensitive behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Ajo-Franklin, D. Drubin, J. Eskin, E. Gee, D. Landgraf, I. Phillips, P. Silver, Rational design of memory in eukaryotic cells. Genes Dev. 21, 2271–2276 (2007)

    Article  Google Scholar 

  2. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland Science, New York, 2002)

    Google Scholar 

  3. D. Anderson, G. Craciun, T. Kurtz, Product-form stationary distributions for deficiency zero chemical reaction networks. Bull. Math. Biol. 72(8), 1947–1970 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. D. Angeli, J. Ferrell, E. Sontag, Detection of multistability, bifurcations, and hysteresis in a large class of biological positive-feedback systems. Proc. Natl. Acad. Sci. USA 101(7), 1822–1827 (2004)

    Article  Google Scholar 

  5. D. Beard, H. Qian, Chemical Biophysics: Quantitative Analysis of Cellular Systems (Cambridge University Press, Cambridge, 2008)

    Book  Google Scholar 

  6. O.G. Berg, J. Paulsson, M. Ehrenberg, Fluctuations and quality of control in biological cells: zero-order ultrasensitivity reinvestigated. Biophys. J. 79(3), 1228–1236 (2000)

    Article  Google Scholar 

  7. N. Blutgen, S. Legewie, H. Herzel, B. Kholodenko, Mechanisms generating ultrasensitivity, bistability, and oscillations in signal transduction, in Introduction to Systems Biology, ed. by S. Choi. (Springer, Berlin, 2007), pp. 282–299

    Google Scholar 

  8. N. Bluthgen, H. Herzel, Map-kinase-cascade: switch, amplifier, or feedback controller? in 2nd Workshop on Computation of Biochemical Pathways and Genetic Networks (Logos-Verlag, Berlin, 2001), pp. 55–62

    Google Scholar 

  9. A. Briegel, X. Li, A. Bilwes, K. Hughes, G. Jensen, B. Crane, Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc. Natl. Acad. Sci. USA 109(10), 3766–3771 (2012)

    Article  Google Scholar 

  10. N. Buchler, F. Cross, Protein sequestration generates a flexible ultrasensitive response in a genetic network. Mol. Syst. Biol. 5(272), 1–7 (2009)

    Google Scholar 

  11. D. Burz, R. Rivera-Pomar, H. Jaeckle, S. Hanes, Cooperative DNA-binding by Bicoid provides a mechanism for threshold-dependent gene activation in the drosophila embryo. EMBO J. 17(20), 5998–6009 (1998)

    Article  Google Scholar 

  12. J.P. Changeux, J. Thiery, Y. Tung, On the cooperativity of biological membranes. Proc. Natl. Acad. Sci. USA 57, 335–341 (1966)

    Article  Google Scholar 

  13. A. Cornish-Bowden, Fundamentals of Enzyme Kinetics (Butterworth, London, 1979)

    Google Scholar 

  14. C. Craciun, Y. Tang, M. Feinberg, Understanding bistability in complex enzyme-driven reaction networks. Proc. Natl. Acad. Sci. USA 103(23), 8697–8702 (2006)

    Article  MATH  Google Scholar 

  15. V. Danos, J. Feret, W. Fontana, R. Harmer, J. Krivine, Abstracting the differential semantics of rule-based models: exact and automated model reduction, in Annual IEEE Symposium on Logic in Computer Science (Edinburgh, 2010)

    Google Scholar 

  16. D. Del Vecchio, E. Sontag, Engineering principles in bio-molecular systems: from retroactivity to modularity. Eur. J. Control (Special Issue) 15(3–4) (2009)

    Google Scholar 

  17. D. Del Vecchio, A. Ninfa, E. Sontag, Modular cell biology: retroactivity and insulation. Nat. Mol. Syst. Biol. 4, 161 (2008)

    Google Scholar 

  18. R. Deshaies, J. Ferrell, Multisite phosphorylation and the countdown to S phase. Cell 107, 819–822 (2001)

    Article  Google Scholar 

  19. T. Duke, D. Bray, Heightened sensitivity of a lattice of membrane receptors. Proc. Natl. Acad. Sci. USA 96, 10104–10108 (1999)

    Article  Google Scholar 

  20. T. Duke, N. Le Novere, D. Bray, Conformational spread in a ring of proteins: a stochastic approach to allostery. J. Mol. Biol. 308, 541–553 (2001)

    Article  Google Scholar 

  21. G. Enciso, E. Sontag, Monotone systems under positive feedback: multistability and a reduction theorem. Syst. Control Lett. 51(2), 185–202 (2005)

    MathSciNet  Google Scholar 

  22. M. Feinberg, Lectures on chemical reaction networks (1979), Notes of lectures given at the Mathematics Research Center of the University of Wisconsin, available at http://www.che.eng.ohio-state.edu/~FEINBERG/LecturesOnReactionNetworks/

  23. Feinberg, M.: Chemical Oscillations, Multiple Equilibria, and Reaction Network Structure (Academic, New York, 1980), pp. 59–130

    Google Scholar 

  24. J. Ferrell, Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem. Sci. 21(12), 460–466 (1996)

    Article  Google Scholar 

  25. J. Ferrell, Question & answer: cooperativity. J. Biol. 8(53), 1–6 (2009)

    Google Scholar 

  26. F. Gnad, S. Ren, J. Cox, J. Olsen, B. Macek, M. Oroshi, M. Mann, PHOSIDA (phosphorylation site database): managment, structural and evolutionary investigation, and prediction of phosphosites. Genome Biol. 8, R250 (2007)

    Article  Google Scholar 

  27. A. Goldbeter, D. Koshland, An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl. Acad. Sci. USA 78, 6840–6844 (1981)

    Article  MathSciNet  Google Scholar 

  28. V. Gotea, A. Visel, J. Westlund, M. Nobrega, L. Pennachio, I. Ocharenko, Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. Genome Res. 20(5) (2010)

    Google Scholar 

  29. J. Gunawardena, Multisite protein phosphorylation makes a good threshold but can be a poor switch. Proc. Natl. Acad. Sci. USA 102, 14617–14622 (2005)

    Article  Google Scholar 

  30. R. Harmer, V. Danos, J. Feret, J. Krivine, W. Fontana, Intrinsic information carriers in combinatorial dynamical ssytems. Chaos 20, 037108 (2010)

    Article  MathSciNet  Google Scholar 

  31. S. Harvey, A. Charlet, W. Haas, S. Gygi, D. Kellogg, Cdk1-dependent regulation of the mitotic inhibitor Wee1. Cell 122, 407–420 (2005)

    Article  Google Scholar 

  32. S. Harvey, G. Enciso, N. Dephoure, S. Gygi, J. Gunawardena, D. Kellogg, A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Mol. Biol. Cell 22(19), 3595–3608 (2012)

    Article  Google Scholar 

  33. Y. Henis, J. Hancock, I. Prior, Ras acylation, compartmentalization and signaling nanoclusters. Mol. Membr. Biol. 26(1), 80–92 (2009)

    Article  Google Scholar 

  34. K. Hertel, K. Lynch, T. Maniatis, Common themes in the function of transcription and splicing enhancers. Curr. Opin. Cell Biol. 9, 350–357 (1997)

    Article  Google Scholar 

  35. F. Herzog, J. Hill, The Bernstein polynomials for discontinuous functions. Am. J. Math. 68(1), 109–124 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  36. A. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. Proc. Physiol. Soc. 40(Suppl.), iv–vii (1910)

    Google Scholar 

  37. S. Hooshangi, S. Thiberge, R. Weiss, Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102(10), 3581–3586 (2005)

    Article  Google Scholar 

  38. C.Y. Huang, J. Ferrell, Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10078–10083 (1996)

    Article  Google Scholar 

  39. L. Iakoucheva, P. Radivojac, C. Brown, T. O’Connor, J. Sikes, Z. Obradovic, A. Dunker, The importance of intrinsic disorder for protein phosphorylation. Nucleic Acid Res. 32, 1037–1049 (2004)

    Article  Google Scholar 

  40. J. Keener, J. Sneyd, Mathematical Physiology I: Cellular Physiology (Springer, Berlin, 2008)

    Google Scholar 

  41. G. Kegeles, The Hill coefficient for a Monod-Wyman-Changeux allosteric system. FEBS Lett. 103(1), 5–6 (1979)

    Article  Google Scholar 

  42. S. Kim, J. Ferrell, Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128, 1133–1145 (2007)

    Article  Google Scholar 

  43. P. Klein, T. Pawson, M. Tyers, Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr. Biol. 13, 1669–1678 (2003)

    Article  Google Scholar 

  44. D. Koshland, G. Nemethy, D. Filmer, Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5(1), 365–385 (1966)

    Article  Google Scholar 

  45. P. Lenz, P. Swain, An entropic mechanism to generate highly cooperative and specific binding from protein phoshporylations. Curr. Biol. 16, 2150–2155 (2006)

    Article  Google Scholar 

  46. A. Levchenko, Allovalency: a case of molecular entanglement. Curr. Biol. 13, R876–R878 (2003)

    Article  Google Scholar 

  47. X. Liu, L. Bardwell, Q. Nie, A combination of multisite phosphorylation and substrate sequestration produces switch-like responses. Biophys. J. 98(8), 1396–1407 (2010)

    Article  Google Scholar 

  48. N. Markevich, J. Hoek, B. Kholodenko, Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades. J. Cell Biol. 164(3), 353–359 (2004)

    Article  Google Scholar 

  49. M. Meinke, J. Bishop, R. Edstrom, Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. Proc. Natl. Acad. Sci USA 83(9), 2865–2868 (1986)

    Article  Google Scholar 

  50. G. Melen, S. Levy, N. Barkai, B. Shilo, Threshold responses to morphogen gradients by zero-order ultrasensitivity. Mol. Syst. Biol. 1(0028), 1–11 (2005)

    Article  Google Scholar 

  51. L. Menten, M. Michaelis, Die kinetik der invertinwirkung. Biochem. Z. 49, 333–369 (1913)

    Google Scholar 

  52. J. Monod, J. Wyman, J.P. Changeux, On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88–118 (1965)

    Article  Google Scholar 

  53. Y. Ohashi, J. Brickman, E. Furman, B. Middleton, M. Carey, Modulating the potency of an activator in a yeast in vitro transcription system. Mol. Cell. Biol. 14(4), 2731–2739 (1994)

    Article  Google Scholar 

  54. S. Orlicky, X. Tang, A. Willems, M. Tyers, F. Sicheri, Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112, 243–256 (2003)

    Article  Google Scholar 

  55. E. O’Shaughnessy, S. Palani, J. Collins, C. Sarkar, Tunable signal processing in synthetic map kinase cascades. Cell 144, 119–131 (2011)

    Article  Google Scholar 

  56. H.R. Ossareh, A.C. Ventura, S.D. Merajver, D. del Vecchio, Long signaling cascades tend to attenuate retroactivity. Biophys. J. 100(7), 1617–1626 (2011)

    Article  Google Scholar 

  57. E. Ozbudak, M. Thattai, H. Lim, B. Shraiman, A. van Oudenaarden, Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004)

    Article  Google Scholar 

  58. G. Pearson, F. Robinson, T.B. Gibson, B. Xu, M. Karandikar, K. Berman, M. Cobb, Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22(2), 153–183 (2001)

    Google Scholar 

  59. F. Rossi, A. Kringstein, A. Spicher, O. Guicherit, H. Blau, Transcriptional control: rheostat converted to on/off switch. Mol. Cell 6, 723–728 (200)

    Google Scholar 

  60. Z. Serber, J. Ferrell, Tuning bulk electrostatics to regulate protein function. Cell 128, 441–444 (2007)

    Article  Google Scholar 

  61. G. Shinar, M. Feinberg, Structural sources of robustness in biochemical reaction networks. Science 327, 1389–1391 (2010)

    Article  Google Scholar 

  62. A. Shiu, Algebraic methods for biochemical reaction network theory. Ph.D. thesis, University of California, Berkeley, 2010

    Google Scholar 

  63. O. Shoval, L. Goentoro, Y. Hart, A. Mayo, E. Sontag, U. Alon, Fold change detection and scalar symmetry of sensory input fields. Proc. Natl. Acad. Sci. USA 107, 15995–16000 (2010)

    Article  Google Scholar 

  64. K. Sneppen, M. Micheelsen, I. Dodd, Ultrasensitive gene regulation by positive feedback loops in nucleosome modification. Mol. Syst. Biol. 182 (2008)

    Google Scholar 

  65. S. Strickfaden, M.J. Winters, G. Ben-Ari, R. Lamson, M. Tyers, P. Pryciak, A mechanism for cell-cycle regulation of MAP kinase signaling in a yeast differentiation pathway. Cell 128, 519–531 (2007)

    Article  Google Scholar 

  66. S. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Perseus Book Publishing, Cambridge, 1994)

    Google Scholar 

  67. M. Thattai, A. van Oudenaarden, Attenuation of noise in ultrasensitive signaling cascades. Biophys. J. 82(6), 2943–2950 (2002)

    Article  Google Scholar 

  68. M. Thomson, J. Gunawardena, Unlimited multistability in multisite phosphorylation systems. Nature 460, 274–277 (2009)

    Article  Google Scholar 

  69. D. del Vecchio, E. Sontag, Engineering principles in bio-molecular systems: from retroactivity to modularity. Eur. J. Control (Special Issue) 15(3–4) (2009)

    Google Scholar 

  70. R. Verma, R. Annan, M. Huddleston, S. Carr, G. Reynard, R. Deshaies, Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455–460 (1997)

    Article  Google Scholar 

  71. M. Vignali, D. Steger, K. Neely, J. Workman, Distribution of acetylated histones resulting from Gal4-VP16 recruitment of SAGA and NuA4 complexes. EMBO J. 19(11), 2629–2640 (2000)

    Article  Google Scholar 

  72. L. Wang, Q. Nie, G. Enciso, Nonessential sites improve phosphorylation switch. Biophys. Lett. 99(10), 41–43 (2010)

    Google Scholar 

  73. Y. Xu, J. Gunawardena, Realistic enzymology for post-translational modification: zero-order ultrasensitivity revisited. J. Theor. Biol. 311, 139–152 (2012)

    Article  MathSciNet  Google Scholar 

  74. C. Zhang, S. Kim, The effect of dynamic receptor clustering on the sensitivity of biochemical signaling. Pac. Symp. Biocomput. 5, 350–361 (2000)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank my colleagues Qing Nie and Liming Wang as well as my student Shane Ryerson for their participation in the described research, and Jeremy Gunawardena for his mentoring and for introducing me into this field.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Germán A. Enciso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Enciso, G.A. (2013). Multisite Mechanisms for Ultrasensitivity in Signal Transduction. In: Kloeden, P., Pötzsche, C. (eds) Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics(), vol 2102. Springer, Cham. https://doi.org/10.1007/978-3-319-03080-7_6

Download citation

Publish with us

Policies and ethics