Skip to main content

Coupled Nonautonomous Oscillators

  • Chapter
  • First Online:
Nonautonomous Dynamical Systems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2102))

Abstract

First, we introduce nonautonomous oscillator—a self-sustained oscillator subject to external perturbation and then expand our formalism to two and many coupled oscillators . Then, we elaborate the Kuramoto model of ensembles of coupled oscillators and generalise it for time-varying couplings. Using the recently introduced Ott-Antonsen ansatz we show that such ensembles of oscillators can be solved analytically. This opens up a whole new area where one can model a virtual physiological human by networks of networks of nonautonomous oscillators. We then briefly discuss current methods to treat the coupled nonautonomous oscillators in an inverse problem and argue that they are usually considered as stochastic processes rather than deterministic. We now point to novel methods suitable for reconstructing nonautonomous dynamics and the recently expanded Bayesian method in particular. We illustrate our new results by presenting data from a real living system by studying time-dependent coupling functions between the cardiac and respiratory rhythms and their change with age. We show that the well known reduction of the variability of cardiac instantaneous frequency is mainly on account of reduced influence of the respiration to the heart and moreover the reduced variability of this influence. In other words, we have shown that the cardiac function becomes more autonomous with age, pointing out that nonautonomicity and the ability to maintain stability far from thermodynamic equilibrium are essential for life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors contributed equally to this work and have therefore decided for an alphabetical order.

  2. 2.

    The following statement holds also for higher frequency ratios in the form \(\psi = n\phi _{2} - m\phi _{1}\) where n and m are integer numbers.

References

  1. H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, The analysis of observed chaotic data in physical systems. Rev. Mod. Phys. 65(4), 1331–1392 (1993)

    Article  MathSciNet  Google Scholar 

  2. J.A. Acebrón, R. Spigler, Adaptive frequency model for phase-frequency synchronization in large populations of globally coupled nonlinear oscillators. Phys. Rev. Lett. 81(11), 2229–2232 (1998)

    Article  Google Scholar 

  3. J.A. Acebrón, L.L. Bonilla, S. De Leo, R. Spigler, Breaking the symmetry in bimodal frequency distributions of globally coupled oscillators. Phys. Rev. E 57(5), 5287–5290 (1998)

    Article  Google Scholar 

  4. J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005)

    Article  Google Scholar 

  5. A.A. Andronov, A.A. Vitt, S.E. Khaikin, The Theory of Oscillators (Dover, New York, 2009)

    Google Scholar 

  6. V. Anishchenko, T. Vadivasova, G. Strelkova, Stochastic self-sustained oscillations of non-autonomous systems. Eur. Phys. J. Spec. Top. 187, 109–125 (2010)

    Article  Google Scholar 

  7. A. Bahraminasab, F. Ghasemi, A. Stefanovska, P.V.E. McClintock, H. Kantz, Direction of coupling from phases of interacting oscillators: a permutation information approach. Phys. Rev. Lett. 100(8), 084101 (2008)

    Google Scholar 

  8. T. Bayes, An essay towards solving a problem in the doctrine of chances. Philos. Trans. 53, 370–418 (1763)

    Google Scholar 

  9. H. Berger, Ueber das Elektroenkephalogramm des Menschen. Arch. Psychiatr. Nervenkr. 87, 527–570 (1929)

    Article  Google Scholar 

  10. L.L. Bonilla, J.C. Neu, R. Spigler, Nonlinear stability of incoherence and collective synchronization in a population of coupled oscillators. J. Stat. Phys. 67, 313–330 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. R. Brown, P. Bryant, H.D.I. Abarbanel, Computing the Lyapunov spectrum of a dynamical system from an observed time series. Phys. Rev. A 43(6), 2787–2806 (1991)

    Article  MathSciNet  Google Scholar 

  12. G. Buzsáki, A. Draguhn, Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  Google Scholar 

  13. M.Y. Choi, Y.W. Kim, D.C. Hong, Periodic synchronization in a driven system of coupled oscillators. Phys. Rev. E 49(5), 3825–3832 (1994)

    Article  Google Scholar 

  14. D. Cumin, C.P. Unsworth, Generalising the kuramoto model for the study of neuronal synchronisation in the brain. Physica D 226, 181–196 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. D.-F. Dai, P.S. Rabinovitch, Z. Ungvari, Mitochondria and cardiovascular aging. Circ. Res. 110, 1109–1124, (2012)

    Article  Google Scholar 

  16. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Dromparis, E.D. Michelakis, Mitochondria in vascular health and disease. Annu. Rev. Physiol. 75, 95–126 (2013)

    Article  Google Scholar 

  18. A. Duggento, T. Stankovski, P.V.E. McClintock, A. Stefanovska, Dynamical Bayesian inference of time-evolving interactions: from a pair of coupled oscillators to networks of oscillators. Phys. Rev. E 86, 061126 (2012)

    Article  Google Scholar 

  19. J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57(3), 617–656 (1983)

    Article  MathSciNet  Google Scholar 

  20. G.B. Ermentrout, M. Wechselberger, Canards, clusters, and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 8, 253–278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. A.M. Fraser, H.L. Swinney, Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33(2), 1134–1140 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  22. G. Gerisch, U. Wick, Intracellular oscillations and release of cyclic-AMP from dictiostelium cells. Biochem. Biophys. Res. Commun. 65(1), 364–370 (1975)

    Article  Google Scholar 

  23. A.L. Goldberger, L.A.N. Amaral, J.M. Hausdorff, P.C. Ivanov, C.K. Peng, H.E. Stanley. Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99(Suppl. 1), 2466–2472 (2002)

    Article  Google Scholar 

  24. P. Grassberger, I. Procaccia, Characterization of strange attractors. Phys. Rev. Lett. 50(5), 346–349 (1983)

    Article  MathSciNet  Google Scholar 

  25. P. Grassberger, I. Procaccia, Measuring the strangeness of strange attractors. Physica D 9, 189–208 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  26. H. Haken, Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems. Rev. Mod. Phys. 47, 67–121 (1975)

    Article  MathSciNet  Google Scholar 

  27. S. Hales, Statistical Essays II, Hæmastatisticks (Innings Manby, London, 1733)

    Google Scholar 

  28. K. Hasselmann, W. Munk, G. MacDonald, Bispectra of ocean waves, in Time Series Analysis (Wiley, New York, 1963), pp. 125–139

    Google Scholar 

  29. H. Hong, S.H. Strogatz, Kuramoto model of coupled oscillators with positive and negative coupling parameters: an Example of conformist and contrarian oscillators. Phys. Rev. Lett. 106(5), 054102 (2011)

    Google Scholar 

  30. W. Horsthemke, R. Lefever, Noise Induced Transitions (Springer, Berlin, 1984)

    MATH  Google Scholar 

  31. D. Iatsenko, S. Petkoski, P.V.E. McClintock, A. Stefanovska, Stationary and traveling wave states of the Kuramoto model with an arbitrary distribution of frequencies and coupling strengths. Phys. Rev. Lett. 110(6), 064101 (2013)

    Google Scholar 

  32. D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P.J. Owen-Lynch, P.B.M. Clarkson, P.V.E. McClintock, A. Stefanovska, Evolution of cardio-respiratory interactions with age. Philos. Trans. R. Soc. A 371(1997), 20110622 (2013)

    MathSciNet  Google Scholar 

  33. J. Jamšek, A. Stefanovska, P.V.E. McClintock, I. A. Khovanov, Time-phase bispectral analysis. Phys. Rev. E 68(1), 016201 (2003)

    Google Scholar 

  34. J. Jamšek, A. Stefanovska, P.V.E. McClintock, Wavelet bispectral analysis for the study of interactions among oscillators whose basic frequencies are significantly time variable. Phys. Rev. E 76, 046221 (2007)

    Article  Google Scholar 

  35. J. Jamšek, M. Paluš, A. Stefanovska, Detecting couplings between interacting oscillators with time-varying basic frequencies: instantaneous wavelet bispectrum and information theoretic approach. Phys. Rev. E 81(3), 036207 (2010)

    Google Scholar 

  36. K. Karhunen, Zur spektraltheorie stochastischer prozesse. Ann. Acad. Sci. Fenn. A1, Math. Phys. 37 (1946)

    Google Scholar 

  37. M.B. Kennel, R. Brown, H.D.I Abarbanel. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45(6), 3403–3411 (1992)

    Google Scholar 

  38. D.A. Kenwright, A. Bahraminasab, A. Stefanovska, P.V.E. McClintock, The effect of low-frequency oscillations on cardio-respiratory synchronization. Eur. Phys. J. B. 65(3), 425–433 (2008)

    Article  Google Scholar 

  39. H.S. Kim, R. Eykholt, J.D. Salas, Nonlinear dynamics, delay times and embedding windows. Physica D 127(1–2), 48–60 (1999)

    Article  MATH  Google Scholar 

  40. P.E. Kloeden, Synchronization of nonautonomous dynamical systems. Electron. J. Differ. Equ. 1, 1–10 (2003)

    Google Scholar 

  41. P.E. Kloeden, Nonautonomous attractors of switching systems. Dyn. Syst. 21(2), 209–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  42. P.E. Kloeden, R. Pavani, Dissipative synchronization of nonautonomous and random systems. GAMM-Mitt. 32(1), 80–92 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  43. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems. AMS Mathematical Surveys and Monographs (American Mathematical Society, New York, 2011)

    MATH  Google Scholar 

  44. B. Kralemann, L. Cimponeriu, M. Rosenblum, A. Pikovsky, R. Mrowka, Phase dynamics of coupled oscillators reconstructed from data. Phys. Rev. E 77(6, Part 2), 066205 (2008)

    Google Scholar 

  45. Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer, Berlin, 1984)

    Book  MATH  Google Scholar 

  46. F.T. Kurz, M.A. Aon, B. O’Rourke, A.A. Armoundas, Spatio-temporal oscillations of individual mitochondria in cardiac myocytes reveal modulation of synchronized mitochondrial clusters. Proc. Natl. Acad. Sci. USA 107, 14315–14320 (2010)

    Article  Google Scholar 

  47. S.P. Kuznetsov, A. Pikovsky, M. Rosenblum, Collective phase chaos in the dynamics of interacting oscillator ensembles. Chaos 20, 043134 (2010)

    Article  MathSciNet  Google Scholar 

  48. S.H. Lee, S. Lee, S.-W. Son, P. Holme, Phase-shift inversion in oscillator systems with periodically switching couplings. Phys. Rev. E 85, 027202 (2006)

    Article  Google Scholar 

  49. M. Loève, Fonctions aleatoires de second ordre. C.R. Acad. Sci. Paris 222(1946)

    Google Scholar 

  50. R. Mañé, On the dimension of the compact invariant sets of certain non-linear maps, in Dynamical Systems and Turbulence, ed. by D.A. Rand, L.S. Young. Lecture Notes in Mathematics, vol. 898 (Springer, New York, 1981)

    Google Scholar 

  51. R.M. May, Biological populations with nonoverlapping generations — stable points, stable cycles, and chaos. Science 186(4164), 645–647 (1974)

    Article  Google Scholar 

  52. R. Mirollo, S.H. Strogatz, The spectrum of the partially locked state for the Kuramoto model. J. Nonlinear Sci. 17(4), 309–347 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  53. E. Montbrio, D. Pazo, Shear diversity prevents collective synchronization. Phys. Rev. Lett. 106(25), 254101 (2011)

    Google Scholar 

  54. E. Montbrio, J. Kurths, B. Blasius, Synchronization of two interacting populations of oscillators. Phys. Rev. E 70(5), 056125 (2004)

    Google Scholar 

  55. F. Moss, P.V.E. McClintock (ed.), Noise in Nonlinear Dynamical Systems, vols. 1–3 (Cambridge University Press, Cambridge, 1989)

    Google Scholar 

  56. C.L. Nikias, M.R. Raghuveer, Bispectrum estimation: a digital signal processing framework. IEEE Proc. 75(7), 869–891 (1987)

    Article  Google Scholar 

  57. C.L. Nikias, A.P. Petropulu, Higher-Order Spectra Anlysis: A Nonlinear Signal Processing Framework (Prentice-Hall, Englewood Cliffs, 1993)

    MATH  Google Scholar 

  58. E. Ott, T.M. Antonsen, Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18(3), 037113 (2008)

    MathSciNet  Google Scholar 

  59. E. Ott, T.M. Antonsen, Long time evolution of phase oscillator systems. Chaos 19(2), 023117 (2009)

    MathSciNet  Google Scholar 

  60. M. Paluš, From nonlinearity to causality: statistical testing and inference of physical mechanisms underlying complex dynamics. Contemp. Phys. 48(6), 307–348 (2007)

    Article  Google Scholar 

  61. M. Paluš, A. Stefanovska, Direction of coupling from phases of interacting oscillators: an information-theoretic approach. Phys. Rev. E 67, 055201(R) (2003)

    Google Scholar 

  62. S. Petkoski, A. Stefanovska, Kuramoto model with time-varying parameters. Phys. Rev. E 86, 046212 (2012)

    Article  Google Scholar 

  63. S. Petkoski, D. Iatsenko, L. Basnarkov, A. Stefanovska, Mean-field and mean-ensemble frequencies of a system of coupled oscillators. Phys. Rev. E 87(3), 032908 (2013)

    Google Scholar 

  64. G. Pfurtschelle, F.H. Lopes da Silva, Event-related eeg/meg synchronization and desynchronization: basic principles. SIAM J. Appl. Dyn. Syst. 110, 1842–1857 (1999)

    Google Scholar 

  65. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization — A Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)

    Book  MATH  Google Scholar 

  66. M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems (Springer, Berlin, 2007)

    MATH  Google Scholar 

  67. C. Rhodes, M. Morari, False-nearest-neighbors algorithm and noise-corrupted time series. Phys. Rev. E 55(5), 6162–6170 (1997)

    Article  Google Scholar 

  68. M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phase synchronization of chaotic oscillators. Phys. Rev. Lett. 76(11), 1804–1807 (1996)

    Article  Google Scholar 

  69. J. Rougemont, F. Naef, Collective synchronization in populations of globally coupled phase oscillators with drifting frequencies. Phys. Rev. E 73, 011104 (2006)

    Article  MathSciNet  Google Scholar 

  70. H. Sakaguchi, Cooperative phenomena in coupled oscillator sytems under external fields. Prog. Theor. Phys. 79(1), 39–46 (1988)

    Article  MathSciNet  Google Scholar 

  71. J.H. Sheeba, A. Stefanovska, P.V.E. McClintock, Neuronal synchrony during anesthesia: a thalamocortical model. Biophys. J. 95(6), 2722–2727 (2008)

    Article  Google Scholar 

  72. J.H. Sheeba, V.K. Chandrasekar, A. Stefanovska, P.V.E. McClintock, Asymmetry-induced effects in coupled phase-oscillator ensembles: routes to synchronization. Phys. Rev. E 79, 046210 (2009)

    Article  MathSciNet  Google Scholar 

  73. L.W. Sheppard, A. Stefanovska, P.V.E. McClintock, Detecting the harmonics of oscillations with time-variable frequencies. Phys. Rev. E 83, 016206 (2011)

    Article  Google Scholar 

  74. S. Shinomoto, Y. Kuramoto, Phase transitions in active rotator systems. Prog. Theor. Phys. 75(5), 1105–1110 (1986)

    Article  Google Scholar 

  75. Y. Shiogai, A. Stefanovska, P.V.E. McClintock, Nonlinear dynamics of cardiovascular ageing. Phys. Rep. 488, 51–110 (2010)

    Article  Google Scholar 

  76. M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance (World Scientific, Singapore, 2005)

    Google Scholar 

  77. P. So, A. Bernard, B.C. Cotton, E. Barreto, Synchronization in interacting populations of heterogeneous oscillators with time-varying coupling. Chaos 18, 037114 (2008)

    Article  MathSciNet  Google Scholar 

  78. T. Stankovski, A. Duggento, P.V.E. McClintock, A. Stefanovska, Inference of time-evolving coupled dynamical systems in the presence of noise. Phys. Rev. Lett. 109, 024101 (2012)

    Article  Google Scholar 

  79. T. Stankovski, Tackling the Inverse Problem for Non-Autonomous Systems: Application to the Life Sciences Springer Theses (Springer, Cham, 2013)

    Google Scholar 

  80. H.E. Stanley, L.A.N. Amaral, A.L. Goldberger, S. Havlin, P.C. Ivanov, C.K. Peng, Statistical physics and physiology: monofractal and multifractal approaches. Physica D 270(1–2), 309–324 (1999)

    Google Scholar 

  81. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain interactions. IEEE Eng. Med. Bio. Mag. 26(6), 25–29 (2007)

    Article  Google Scholar 

  82. A. Stefanovska, M. Bračič, Physics of the human cardiovascular system. Contemp. Phys. 40(1), 31–55 (1999)

    Article  Google Scholar 

  83. A. Stefanovska, P. Krošelj, Correlation integral and frequency analysis of cardiovascular functions. Open Syst. Inf. Dyn. 4, 457–478 (1997)

    Article  MATH  Google Scholar 

  84. A. Stefanovska, S. Strle, P. Krošelj, On the overestimation of the correlation dimension. Phys. Lett. A 235(1), 24–30 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  85. A. Stefanovska, H. Haken, P.V.E. McClintock, M. Hožič, F. Bajrović, S. Ribarič, Reversible transitions between synchronization states of the cardiorespiratory system. Phys. Rev. Lett. 85(22), 4831–4834 (2000)

    Article  Google Scholar 

  86. R.L. Stratonovich, Topics in the Theory of Random Noise: General Theory of Random Processes, Nonlinear Transformations of Signals and Noise. Mathematics and Its Applications (Gordon and Breach, New York, 1963)

    Google Scholar 

  87. S.H. Strogatz, R.E. Mirollo, Stability of incoherence in a population of coupled oscillators. J. Stat. Phys. 63(3–4), 613–635 (1991)

    Article  MathSciNet  Google Scholar 

  88. S.H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  89. S.H. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion, New York, 2003)

    Google Scholar 

  90. Y.F. Suprunenko, P.T. Clemson, A. Stefanovska, Chronotaxic systems: a new class of self-sustained nonautonomous oscillators. Phys. Rev. Lett. 111(2), 024101 (2013)

    Google Scholar 

  91. F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, ed. by D.A. Rand, L.S. Young. Lecture Notes in Mathematics, vol. 898 (Springer, New York, 1981)

    Google Scholar 

  92. D. Taylor, E. Ott, J.G. Restrepo, Spontaneous synchronization of coupled oscillator systems with frequency adaptation. Phys. Rev. E 81(4), 046214 (2010)

    MathSciNet  Google Scholar 

  93. M. Vejmelka, M. Paluš, Inferring the directionality of coupling with conditional mutual information. Phys. Rev. E. 77(2), 026214 (2008)

    Google Scholar 

  94. K. Wiesenfeld, P. Colet, S.H. Strogatz, Synchronization transitions in a disordered josephson series array. Phys. Rev. Lett. 76(3), 404–407 (1996)

    Article  Google Scholar 

  95. A.T. Winfree, The Geometry of Biological Time (Springer, New York, 1980)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Engineering and Physical Sciences Research Council (UK) [Grant No. EP/100999X1]. Our grateful thanks are due to A. Duggento, D. Iatsenko, P.V.E. McClintock and Y. Suprunenko for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Stefanovska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Clemson, P.T., Petkoski, S., Stankovski, T., Stefanovska, A. (2013). Coupled Nonautonomous Oscillators. In: Kloeden, P., Pötzsche, C. (eds) Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics(), vol 2102. Springer, Cham. https://doi.org/10.1007/978-3-319-03080-7_5

Download citation

Publish with us

Policies and ethics