Skip to main content

Canard Theory and Excitability

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2102))

Abstract

An important feature of many physiological systems is that they evolve on multiple scales. From a mathematical point of view, these systems are modeled as singular perturbation problems. It is the interplay of the dynamics on different temporal and spatial scales that creates complicated patterns and rhythms. Many important physiological functions are linked to time-dependent changes in the forcing which leads to nonautonomous behaviour of the cells under consideration. Transient dynamics observed in models of excitability are a prime example.Recent developments in canard theory have provided a new direction for understanding these transient dynamics. The key observation is that canards are still well defined in nonautonomous multiple scales dynamical systems, while equilibria of an autonomous system do, in general, not persist in the corresponding driven, nonautonomous system. Thus canards have the potential to significantly shape the nature of solutions in nonautonomous multiple scales systems. In the context of neuronal excitability, we identify canards of folded saddle type as firing threshold manifolds. It is remarkable that dynamic information such as the temporal evolution of an external drive is encoded in the location of an invariant manifold—the canard.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. R. Amir, M. Michaelis, M. Devor, Burst discharge in primary sensory neurons: triggered by subthreshold oscillations, maintained be depolarizing afterpotentials. J. Neurosci. 22, 1187–1198 (2002)

    Google Scholar 

  2. E. Benoît, J. Callot, F. Diener, M. Diener, Chasse au canard. Collectanea Math. 31–32, 37–119 (1981)

    Google Scholar 

  3. E. Benoît, Systémes lents-rapides dans \({\mathbb{R}}^{3}\) et leur canards. Asterisque 109–110, 159–191 (1983)

    Google Scholar 

  4. A. Borisyuk, J. Rinzel, Understanding neuronal dynamics by geometric dissection of minimal models, in Models and Methods in Neurophysics, Proc. Les Houches Summer School 2003, (Session LXXX), ed. by C. Chow, B. Gutkin, D. Hansel, C. Meunier, J. Dalibard (Elsevier, 2005), pp. 19–72. ISBN:978-0-444-51792-0

    Google Scholar 

  5. M. Brøns, T. Kaper, H. Rotstein, Focus issue: mixed mode oscillations: experiment, computation, and analysis. Chaos 18, 015101 (2008), 1–4

    Google Scholar 

  6. M. Brøns, M. Krupa, M. Wechselberger, Mixed mode oscillations due to the generalized canard phenomenon. Fields Inst. Comm. 49, 39–63 (2006)

    Google Scholar 

  7. P. De Maesschalck, F. Dumortier, Slow-fast Bogdanov-Takens bifurcations. J. Differ. Equat. 250, 1000–1025 (2011)

    MATH  Google Scholar 

  8. P. De Maesschalck, F. Dumortier, M. Wechselberger, Special issue on bifurcation delay. Discrete Cont. Dyn. Sys. S 2(4), 723–1023 (2009)

    Article  Google Scholar 

  9. P. De Maesschalck, M. Wechselberger, Unfolding of a singularly perturbed system modelling type I excitability, preprint (2013)

    Google Scholar 

  10. M. Desroches, J. Guckenheimer, B. Krauskopf, C. Kuehn, H. Osinga, M. Wechselberger, Mixed-mode oscillations with multiple time-scales. SIAM Rev. 54, 211–288 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. M. Desroches, M. Krupa, S. Rodrigues, Inflection, canards and excitability threshold in neuronal models. J. Math. Biol. 67(4), 989–1017 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. C. Dickson, J. Magistretti, M. Shalinsky, E. Fransen, M. Hasselmo, A. Alonso, Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. J. Neurophysiol. 83, 2562–2579 (2000)

    Google Scholar 

  13. E. Doedel, A. Champneys, T. Fairgrieve, Y. Kuznetsov, B. Sandstede, X. Wang, AUTO 97: continuation and bifurcation software for ordinary differential equations (with HomCont)

    Google Scholar 

  14. J. Drover, J. Rubin, J. Su, B. Ermentrout, Analysis of a canard mechanism by which excitatory synaptic coupling can synchronize neurons at low firing frequencies. SIAM J. Appl. Math. 65, 65–92 (2004)

    Article  MathSciNet  Google Scholar 

  15. F. Dumortier, R. Roussarie, Canard cycles and center manifolds. In: Memoirs of the American Mathematical Society, 577 (1996)

    Google Scholar 

  16. B. Ermentrout, M. Wechselberger, Canards, clusters and synchronization in a weakly coupled interneuron model. SIAM J. Appl. Dyn. Syst. 8, 253–278 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. N. Fenichel, Geometric singular perturbation theory. J Differ. Equat. 31, 53–98 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  18. R. FitzHugh, Mathematical models of threshold phenomena in the nerve membrane. Bull. Math. Biophys. 7, 252–278 (1955)

    Google Scholar 

  19. R. FitzHugh, Thresholds and plateaus in the Hodgkin-Huxley nerve equations. J. Gen. Physiol. 43, 867–896 (1960)

    Article  Google Scholar 

  20. R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane. Biophys. J. 1, 455–466 (1961)

    Article  Google Scholar 

  21. R. FitzHugh, Anodal excitation in the Hodgkin-Huxley nerve model. Biophys J. 16, 209–226 (1976)

    Article  Google Scholar 

  22. J. Guckenheimer, Singular Hopf bifurcation in systems with two slow variables. SIAM J. Appl. Dyn. Syst. 7, 1355–1377 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

    Book  MATH  Google Scholar 

  24. J. Guckenheimer, M. Wechselberger, L.-S. Young, Chaotic attractors of relaxation oscillators. Nonlinearity 19, 709–720 (2006)

    Article  MathSciNet  Google Scholar 

  25. Y. Gutfreund, Y. Yarom, I. Segev, Subthreshold oscillations and resonant frequency in guinea-pig cortical neurons: physiology and modelling. J. Physiol. 483, 621–640 (1995)

    Google Scholar 

  26. E. Harvey, V. Kirk, H. Osinga, J. Sneyd, M. Wechselberger, Understanding anomalous delays in a model of intracellular calcium dynamics. Chaos 20, 045104 (2010)

    Article  MathSciNet  Google Scholar 

  27. E. Harvey, V. Kirk, J. Sneyd, M. Wechselberger, Multiple timescales, mixed-mode oscillations and canards in models of intracellular calcium dynamics. J. Nonlinear Sci. 21, 639–683 (2011)

    Article  MATH  Google Scholar 

  28. G. Hek, Geometric singular perturbation theory in biological practice. J. Math. Biol. 60, 347–386 (2010)

    Article  MathSciNet  Google Scholar 

  29. A.L. Hodgkin, The local electric changes associated with repetitive action in a non-medullated axon. J. Physiol. 107, 165–181 (1948)

    Google Scholar 

  30. A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  31. E. Izhikevich, Dynamical systems in neuroscience: the geometry of excitability and bursting, Computational Neuroscience (MIT Press, Cambridge, MA, 2007)

    Google Scholar 

  32. C.K.R.T. Jones, Geometric singular perturbation theory, in dynamical systems. Springer Lect. Notes Math. 1609, 44–120 (1995)

    Article  Google Scholar 

  33. T. Kaper, An introduction to geometric methods and dynamical systems theory for singular perturbation problems. Proc. Symp. Appl. Math. 56, 85–131 (1999)

    Article  MathSciNet  Google Scholar 

  34. J. Keener, J. Sneyd, Mathematical Physiology (Springer, New York, 1998)

    MATH  Google Scholar 

  35. S. Khosrovani, R. van der Giessen, C. de Zeeuw, M. de Jeu, In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns. PNAS 104, 15911–15916 (2007)

    Article  Google Scholar 

  36. P.E. Kloeden, C. Pötzsche, Nonautonomous Dynamical Systems in the Life Sciences, Chap. 1 (Springer, Heidelberg, 2013)

  37. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (American Mathematical Society, Providence, 2011)

    MATH  Google Scholar 

  38. M. Krupa, N. Popovic, N. Kopell, H. Rotstein, Mixed-mode oscillations in a three time-scale model for the dopaminergic neuron. Chaos 18, 015106 (2008)

    Article  MathSciNet  Google Scholar 

  39. M. Krupa, P. Szmolyan, Relaxation oscillations and canard explosion. J. Differ. Equat. 174, 312–368 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  40. M. Krupa, M. Wechselberger, Local analysis near a folded saddle-node singularity. J. Differ. Equat. 248, 2841–2888 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  41. M. McCarthy, N. Kopell, The effect of propofol anesthesia on rebound spiking. SIAM J. Appl. Dyn. Syst. 11, 1674–1697 (2012)

    Article  MATH  Google Scholar 

  42. X. Meng, G. Huguet, J. Rinzel, Type III excitability, slope sensitivity and coincidence detection. Discrete Cont. Dyn. Syst. A 32, 2729–2757 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  43. A. Milik, P. Szmolyan, H. Löffelmann, E. Gröller, The geometry of mixed-mode oscillations in the 3d-autocatalator. Int. J. Bifurcat. Chaos 8, 505–519 (1998)

    Article  MATH  Google Scholar 

  44. J. Mitry, M. McCarthy, N. Kopell, M. Wechselberger, Excitable neurons, firing threshold manifold and canards. J. Math. Neurosci. 3, 12 (2013)

    Article  MathSciNet  Google Scholar 

  45. J.S. Nagumo, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon. Proc. IRE 50, 2061–2070 (1962)

    Article  Google Scholar 

  46. C. Morris, H. Lecar, Voltage oscillations in the barnacle giant muscle fiber. Biophys. J. 35, 193–213 (1981)

    Article  Google Scholar 

  47. C. Del Negro, C. Wilson, R. Butera, H. Rigatto, J. Smith, Periodicity, mixed-mode oscillations, and quasiperiodicity in a rhythm-generating neural network. Biophys. J. 82, 206–14 (2002)

    Article  Google Scholar 

  48. S. Prescott, Y. de Koninck, T. Sejnowski, Biophysical basis for three distinct dynamical mechanisms of action potential initiation. PLoS Comput. Biol. 4(10), e1000198 (2008)

    Google Scholar 

  49. R. O’Malley, Singular Perturbation Methods for Ordinary Differential Equations (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  50. M. Rasmussen, Attractivity and bifurcation for nonautonomous dynamical systems, Lecture Notes in Mathematics, vol. 1907 (Springer, Heidelberg, 2007)

    Google Scholar 

  51. J. Rinzel, Excitation dynamics: insights from simplified membrane models. Fed. Proc. 44, 2944–2946 (1985)

    Google Scholar 

  52. J. Rinzel, G. Ermentrout, Analysis of neural excitability and oscillations, in Methods in Neuronal Modelling: From Synapses To Networks, 2nd edn., ed. by C. Koch, I. Segev (MIT Press, Cambridge, MA, 1998), pp. 251–291

    Google Scholar 

  53. J. Rothman, P. Manis, The roles potassium currents play in regulating the electric activity of ventral cochlear neucleus neurons. J. Neurophysiol. 89, 3097–3113 (2003)

    Article  Google Scholar 

  54. H. Rotstein, M. Wechselberger, N. Kopell, Canard induced mixed-mode oscillations in a medial enorhinal cortex layer II stellate cell model. SIAM J. Appl. Dyn. Syst. 7, 1582–1611 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  55. J. Rubin, D. Terman, Geometric singular perturbation analysis of neuronal dynamics, in Handbook of Dynamical Systems, vol. 2, ed. by B. Fiedler (Elsevier Science B.V., Amsterdam, 2002)

    Google Scholar 

  56. J. Rubin, M. Wechselberger, Giant Squid - Hidden Canard: the 3D geometry of the Hodgkin Huxley model. Biol. Cyb. 97, 5–32 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  57. P. Szmolyan, M. Wechselberger, Canards in \({\mathbb{R}}^{3}\). J. Differ. Equat. 177, 419–453 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  58. P. Szmolyan, M. Wechselberger, Relaxation oscillations in \({\mathbb{R}}^{3}\). J. Differ. Equat. 200, 69–104 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  59. F. Takens, Constrained equations; a study of implicit differential equations and their discontinuous solutions, in Structural stability, the theory of catastrophes, and applications in the sciences. Lecture Notes in Mathematics, vol. 525 (Springer, Berlin/New York, 1976)

    Google Scholar 

  60. T. Vo, R. Bertram, J. Tabak, M. Wechselberger, Mixed-mode oscillations as a mechanism for pseudo-plateau bursting. J. Comp. Neurosci. 28, 443–458 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  61. M. Wechselberger, Existence and bifurcation of canards in \({\mathbb{R}}^{3}\) in the case of a folded node. SIAM J. Appl. Dyn. Syst. 4, 101–139 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  62. M. Wechselberger, Canards. Scholarpedia 2(4), 1356 (2007)

    Article  Google Scholar 

  63. M. Wechselberger, À propos de canards (Apropos canards). Trans. Am. Math. Soc. 364, 3289–3309 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  64. S. Wieczorek, P. Ashwin, C. Luke, P. Cox, Excitability in ramped systems: the compost-bomb instability. Proc. R. Soc. A 467, 1243–1269 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  65. W. Zhang, V. Kirk, J. Sneyd, M. Wechselberger, Changes in the criticality of Hopf bifurcations due to certain model reduction techniques in systems with multiple timescales. J. Math. Neurosci. 1, 9 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH grant DC008543-01 (JR) and by the ARC grant FT120100309 (MW). MW would like to thank the organisers of the Inzell workshop for their hospitality and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Wechselberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wechselberger, M., Mitry, J., Rinzel, J. (2013). Canard Theory and Excitability. In: Kloeden, P., Pötzsche, C. (eds) Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics(), vol 2102. Springer, Cham. https://doi.org/10.1007/978-3-319-03080-7_3

Download citation

Publish with us

Policies and ethics