Skip to main content

Nonautonomous Dynamical Systems in the Life Sciences

  • Chapter
  • First Online:
Nonautonomous Dynamical Systems in the Life Sciences

Part of the book series: Lecture Notes in Mathematics ((LNMBIOS,volume 2102))

Abstract

Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time-dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. In this survey, we introduce basic concepts and tools for appropriate nonautonomous dynamical systems and apply them to various representative biological models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.M. Adams, H.T. Banks, J.E. Banks, J.D. Stark, Population dynamics models in plant-insect herbivore-pesticide interactions. Math. Biosci. 196(1), 39–64 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. L.Ya. Adrianova, Introduction to Linear Systems of Differential Equations. Translations of Mathematical Monographs, vol. 146 (AMS, Providence, 1995)

    Google Scholar 

  3. H. Amann, Ordinary Differential Equations: An Introduction to Nonlinear Analysis. Studies in Mathematics, vol. 13 (Walter De Gruyter, Berlin, 1990)

    Google Scholar 

  4. M. Anguiano, P.E. Kloeden, Nonautonomous SIR equations with diffusion. Commun. Pure Appl. Anal. 13, 157–173 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. B. Aulbach, T. Wanner, in Integral Manifolds for Carathéodory Type Differential Equations in Banach Spaces, ed. by B. Aulbach, F. Colonius. Six Lectures on Dynamical Systems (World Scientific, Singapore, 1996), pp. 45–119

    Google Scholar 

  6. M. Bachar, J. Batzel, S. Ditlevsen, Stochastic Biomathematical Models. Lecture Notes in Mathematics (Mathematical Biosciences Subseries), vol. 2058 (Springer, Berlin, 2013)

    Google Scholar 

  7. H.T. Banks, J.E. Banks, S.L. Joyner, J.D. Stark, Dynamic models for insect mortality due to exposure to insecticides. Math. Comput. Model. 48(1–2), 316–332 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Baranyi, T.A. Roberts, P. McClure, A non-autonomous differential equation to model bacterial growth. Food Microbiol. 10, 43–59 (1993)

    Article  Google Scholar 

  9. M. Barenco, D. Tomescu, D. Brewer, R. Callard, J. Stark, M. Hubank, Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol. 7(3) (2006)

    Google Scholar 

  10. B. Baeumer et al., Predicting the drug release kinetics of matrix tablets. Discrete Contin. Dyn. Syst. Ser. B 17(2), 261–277 (2009)

    Article  MathSciNet  Google Scholar 

  11. C. Castillo-Chavez, B. Song, Dynamical models of tubercolosis and their applications. Math. Biosci. Eng. 1(2), 361–404 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. D.N. Cheban, P.E. Kloeden, B. Schmalfuß, The relationship between pullback, forward and global attractors of nonautonomous dynamical systems. Nonlin. Dynam. Syst. Theory 2, 9–28 (2002)

    Google Scholar 

  13. S.-N. Chow, C. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields (Cambridge University Press, Cambridge, 1994)

    Book  MATH  Google Scholar 

  14. I. Chueshov, Monotone Random Systems Theory and Applications. Lecture Notes in Mathematics, vol. 1779 (Springer, Berlin, 2002)

    Google Scholar 

  15. C.F. Clancy, M.J.A. O’Callaghan, T.C. Kelly, A multi-scale problem arising in a model of avian flu virus in a seabird colony. J. Phys. Conf. Ser. 55, 45–54 (2006)

    Article  Google Scholar 

  16. N.G. Cogan, Effects of persister formation on bacterial response to dosing. J. Theor. Biol. 238(3), 694–703 (2006)

    Article  MathSciNet  Google Scholar 

  17. F. Colonius, W. Kliemann, The Dynamics of Control (Birkhäuser, Basel, 1999)

    Google Scholar 

  18. W.A. Coppel, Dichotomies in Stability Theory. Lecture Notes in Mathematics, vol. 629 (Springer, Berlin, 1978)

    Google Scholar 

  19. J.L. Daleckiĭ, M.G. Kreĭn, Stability of Solutions of Differential Equations in Banach Space. Translations of Mathematical Monographs, vol. 43 (AMS, Providence, 1974)

    Google Scholar 

  20. G. De Nicolao et al., A Minimal Model Describing the Effect of Drug Administration on Tumor Growth Dynamics. 14th Mediterranean Conference on Control and Automation (2006). doi:10.1109/MED.2006.328783

    Google Scholar 

  21. L.G. de Pillis, A. Radunskaya, The dynamics of an optimally controlled tumor model: a case study, Math. Comput. Model. 37, 1221–1244 (2003)

    Article  MATH  Google Scholar 

  22. L. Dieci, E.S. van Vleck, Lyapunov and Other Spectra: A Survey. Collected Lectures on the Preservation of Stability under Discretization (SIAM, Philadelphia, 2002), pp. 197–218

    Google Scholar 

  23. L. Dieci, E.S. van Vleck, Lyapunov and Sacker-Sell spectral intervals. J. Dyn. Differ. Equ. 19(2), 265–293 (2007)

    Article  MATH  Google Scholar 

  24. J. Dushoff, J.B. Plotkin, S.A. Levin, D.J.D. Earn, Dynamic resonance can account for seasonality of influenza epidemics. Proc. Natl. Acad. Sci. USA 101(48), 16915–16916 (2004)

    Article  Google Scholar 

  25. R. Eftimie, J.L. Bramson, D.J.D. Earn, Interaction between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Fabbri, R.A. Johnson, F. Mantellini, A nonautonomous saddle-node bifurcation pattern. Stoch. Dyn. 4(3), 335–350 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Garira, S.D. Musekwa, T. Shiri, Optimal control of combined therapy in a single strain HIV-1 model. Electron. J. Differ. Equ. 2005(52), 1–22 (2005)

    MathSciNet  Google Scholar 

  28. I. Győri, S. Michelson, J. Leith, Time-dependent subpopulation induction in heterogeneous tumors. Bull. Math. Biol. 50(6,) 681–696 (1988)

    Google Scholar 

  29. P. Hahnfeldt, D. Panigrahy, J. Folkman, L.R. Hlatky, Tumor development under angiogenic signaling: a dynamical theory of tumor growth, treatment response, and postvascular dormancy. Cancer Res. 59, 4770–4775 (1999)

    Google Scholar 

  30. G. Herzog, R. Redheffer, Nonautonomous SEIRS and Thron models for epidemiology and cell biology. Nonlinear Anal. Real World Appl. 4, 33–44 (2004)

    Article  MathSciNet  Google Scholar 

  31. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic, Boston, 1974)

    MATH  Google Scholar 

  32. Z. Hu, P. Bi, W. Ma, S. Ruan, Bifurcations of an SIRS epidemic model with nonlinear incidence rate. Discrete Contin. Dyn. Syst. Ser. B 15(3), 93–112 (2011)

    MATH  MathSciNet  Google Scholar 

  33. T. Hüls, Homoclinic trajectories of non-autonomous maps. J. Differ. Equ. Appl. 17(1), 9–31 (2011)

    Article  MATH  Google Scholar 

  34. M. Imran, H.L. Smith, The pharmacodynamics of antibiotic treatment. Comput. Math. Methods Med. 7(4), 229–263 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. M. Imran, H.L. Smith, The dynamics of bacterial infection, innate immune response, and antibiotic treatment. Discrete Contin. Dyn. Syst. Ser. B 8(1), 127–145 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  36. B. Janssen, L. Révéesz, Analysis of the growth of tumor cell populations. Math. Biosci. 19(1–2), 131–154 (1974)

    Article  Google Scholar 

  37. R.A. Johnson, F. Mantellini, A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete Contin. Dyn. Syst. 9(1), 209–224 (2003)

    MATH  MathSciNet  Google Scholar 

  38. G.P. Karev, A.S. Novozhilov, E.V. Koonin, Mathematical modeling of tumor therapy with oncolytic viruses: effects of parametric heterogeneity on cell dynamics. Biol. Direct 1 (2006)

    Google Scholar 

  39. J. Keener, J. Sneyd, Mathematical Physiology, vol. I & II, 2nd edn. (Springer, Heidelberg, 2009)

    Google Scholar 

  40. D. Kirschner, G.F. Webb, A model for treatment strategy in the chemotherapy of AIDS. Bull. Math. Biol. 58(1), 367–390 (1996)

    Article  MATH  Google Scholar 

  41. D. Kirschner, G.F. Webb, Understanding drug resistance for monotherapy treatment of HIV infection. Bull. Math. Biol. 59(4), 763–785 (1997)

    Article  MATH  Google Scholar 

  42. D. Kirschner, G.F. Webb, Immunotherapy of HIV-1 infection, J. Biol. Syst. 6(1), 71–83 (1998)

    Article  MATH  Google Scholar 

  43. D. Kirschner, S. Lenhart, S. Serbin, Optimal control of the chemotherapy of HIV. J. Math. Biol. 35, 775–792 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. P.E. Kloeden, Pullback attractors in nonautonomous difference equations. J. Differ. Equ. Appl. 6(1), 33–52 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  45. P.E. Kloeden, Pitchfork and transcritical bifurcations in systems with homogenous nonlinearities and an almost periodic time coefficient. Commun. Pure Appl. Anal. 1(4), 1–14 (2002)

    MathSciNet  Google Scholar 

  46. P.E. Kloeden, Pullback attractors for nonautonomous semidynamical systems. Stoch. Dyn. 3(1), 101–112 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  47. P.E. Kloeden, Nonautonomous attractors of switching systems. Dyn. Syst. 21, 209–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  48. P.E. Kloeden, V. Kozyakin, The dynamics of epidemiological systems with nonautonomous and random coefficients. Math. Eng. Sci. Aerosp. 2(2), 105–118 (2011)

    Google Scholar 

  49. P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random Markov chains with tridiagonal generators. Bull. Aust. Math. Soc. 87, 27–36 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  50. P.E. Kloeden, V. Kozyakin, Asymptotic behaviour of random tridiagonal Markov chains in biological applications. Discrete Contin. Dyn. Syst. Ser. B 18(2), 453–466 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  51. P.E. Kloeden, C. Pötzsche, Nonautonomous Bifurcation Scenarios in SIR Models, Manuscript (2013)

    Google Scholar 

  52. P.E. Kloeden, M. Rasmussen, Nonautonomous Dynamical Systems (AMS, Providence, 2011)

    MATH  Google Scholar 

  53. P.E. Kloeden, S. Siegmund, Bifurcations and continuous transitions of attractors in autonomous and nonautonomous systems. Int. J. Bifurcat. Chaos 5(2), 1–21 (2005)

    Google Scholar 

  54. P.E. Kloeden, C. Pötzsche, M. Rasmussen, Discrete-time nonautonomous dynamical systems, in Stability and Bifurcation in Non-Autonomous Differential Equations, ed. by R. Johnson, M.P. Pera. Lecture Notes in Mathematics, vol. 2065 (Springer, Berlin, 2012)

    Google Scholar 

  55. M.Y. Li, J.R. Graef, L. Wang, J. Karsai, Global dynamics of a SEIR model with varying total population size. Math. Biosci. 160, 191–213 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  56. R.M. Lopez, B.R. Morin, S.K. Suslov, Logistic models with time-dependent coefficients and some of their applications (2011, preprint)

    Google Scholar 

  57. A. Makroglou, J. Li, Y.K. Kuang, Mathematical models and software tools for the glucose-insulin regulatory system and diabeties: an overview. Appl. Numer. Math. 56, 559–573 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  58. S. Michelson, B.E. Miller, A.S. Glicksmann, J. Leith, Tumor micro-ecology and competitive interactions. J. Theor. Biol. 128, 233–246 (1987)

    Article  Google Scholar 

  59. S. Mohamad, K. Gopalsamy, Neuronal dynamics in the time varying environments: continuous and discrete time models. Discrete Contin. Dyn. Syst. 6(4), 841–860 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  60. H. Moore, W. Gu, A mathematical model for treatment-resistant mutations of HIV. Math. Biosci. Eng. 2(2), 363–380 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  61. L. Moreau, E.D. Sontag, M. Arcak, Feedback tuning of bifurcations. Syst. Control Lett. 50(3), 229–239 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  62. J.D. Murray, Mathematical Biology: I. An Introduction. Interdisciplinary Applied Mathematics, vol. 17, 3rd edn. (Springer, Berlin, 2001)

    Google Scholar 

  63. C. Núñez, R. Obaya, A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete Contin. Dyn. Syst. Ser. B 9(3–4), 701–730 (2008)

    MATH  MathSciNet  Google Scholar 

  64. K.J. Palmer, Exponential dichotomies for almost periodic equations. Proc. Am. Math. Soc. 101, 293–298 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  65. P. Palumbo, W. Clausen, S. Panunzi, A. De Gaetano, Linear periodic models of subcutaneous insulin absorption. HERMIS 6, 60–79 (2005)

    Google Scholar 

  66. C. Pötzsche, Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. Math. Anal. Appl. 289, 317–335 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  67. C. Pötzsche, Robustness of hyperbolic solutions under parametric perturbations. J. Differ. Equ. Appl. 15(8–9), 803–819 (2009)

    Article  MATH  Google Scholar 

  68. C. Pötzsche, Nonautonomous bifurcation of bounded solutions I: a Lyapunov-Schmidt approach. Discrete Contin. Dyn. Syst. Ser. B 14(2), 739–776 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  69. C. Pötzsche, Nonautonomous bifurcation of bounded solutions II: a shovel bifurcation pattern. Discrete Contin. Dyn. Syst. Ser. A 31(1), 941–973 (2011)

    Article  MATH  Google Scholar 

  70. C. Pötzsche, Nonautonomous continuation of bounded solutions. Commun. Pure Appl. Anal. 10(3), 937–961 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  71. C. Pötzsche, Bifurcations in nonautonomous dynamical systems: Results and tools in discrete time, in Proceedings of the Workshop on “Future Directions in Difference Equations”, Vigo, Spain, 2011, ed. by E. Liz. Colección Congresos, no. 69, Servizo de Publicacións de Universidade de Vigo, 13–17 June 2011, pp. 163–212

    Google Scholar 

  72. C. Pötzsche, M. Rasmussen, Taylor approximation of integral manifolds. J. Dyn. Differ. Equ. 18(2), 427–460 (2006)

    Article  MATH  Google Scholar 

  73. M. Rasmussen, Towards a bifurcation theory for nonautonomous difference equation. J. Differ. Equ. Appl. 12(3–4), 297–312 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  74. M. Rasmussen, Attractivity and Bifurcation for Nonautonomous Dynamical Systems. Lecture Notes in Mathematics, vol. 1907 (Springer, Berlin, 2007)

    Google Scholar 

  75. M. Rasmussen, Nonautonomous bifurcation patterns for one-dimensional differential equations. J. Differ. Equ. 234, 267–288 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  76. R.K. Sachs, L.R. Hlatky, P. Hahnfeldt, Simple ODE models of tumor growth and anti-angiogenic or radiation treatment. Math. Comput. Model. 33, 1297–1305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  77. R.J. Sacker, G.R. Sell, A spectral theory for linear differential systems. J. Differ. Equ. 27, 320–358 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  78. W.M. Schaffer, T.V. Bronnikova, Parametric dependence in model epidemics. I: contact-related parameters. J. Biol. Dyn. 1(2), 183–195 (2007)

    MATH  MathSciNet  Google Scholar 

  79. G.R. Sell, Topological Dynamics and Differential Equations (Van Nostrand Reinhold, London, 1971)

    MATH  Google Scholar 

  80. G.R. Sell, The structure of a flow in the vicinity of an almost periodic motion. J. Differ. Equ. 27(3), 359–393 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  81. S. Siegmund, Dichotomy spectrum for nonautonomous differential equations. J. Dyn. Differ. Equ. 14(1), 243–258 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  82. M. Simeoni, et al, Predictive pharmacokinetic-pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004)

    Article  Google Scholar 

  83. W. Shen, Y. Yi, Almost Automorphic and Almost Periodic Dynamics in Skew-product Semiflows. Memoirs of the AMS, vol. 647 (AMS, Providence, 1998)

    Google Scholar 

  84. E.D. Sontag, Mathematical Control Theory. Texts in Applied Mathematics, vol. 6, 2nd edn. (Springer, New York, 1998)

    Google Scholar 

  85. E.D. Sontag, Some new directions in control theory inspired by systems biology. Syst. Biol. 1(1), 9–18 (2004)

    Article  Google Scholar 

  86. E.D. Sontag, Molecular systems biology and control. Europ. J. Control 11, 1–40 (2005)

    Article  MathSciNet  Google Scholar 

  87. H.R. Thieme, Uniform weak implies uniform strong persistence for non-autonomous semiflows. Proc. Am. Math. Soc. 127(8), 2395–2403 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  88. H.R. Thieme, Uniform persistence and permanence for non-autonomous semiflows in population biology. Math. Biosci. 166, 173–201 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  89. M. Turelli, Random environments and stochastic calculus. Theor. Popul. Biol. 12, 140–178 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  90. H. Wang, J. Li, Y.K. Kuang, Mathematical modeling and qualitative analysis of insulin therapies. Math. Biosci. 210, 17–33 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  91. T. Zhang, Z. Teng, On a nonautonomous SEIRS model in epidemiology. Bull. Math. Biol. 69, 2537–2559 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  92. X.-Q. Zhao, Persistence in almost periodic predator-prey reaction-diffusion equations, in Dynamical Systems and their Application in Biology, ed. by S. Ruan, G.S.K. Wolkowicz, J. Wu. Fields Institute Communications (AMS, Providence, 2003), pp. 259–268

    Google Scholar 

  93. M. Zhien, B. Song, T.G. Hallam, The threshold of survival for systems in a fluctuating environment. Bull. Math. Biol. 53(3), 311–323 (1989)

    Google Scholar 

Download references

Acknowledgements

Peter E. Kloeden was partially supported by the DFG grant KL 1203/7-1, the Spanish Ministerio de Ciencia e Innovación project MTM2011-22411, the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía) under the Ayuda 2009/FQM314 and the Proyecto de Excelencia P07-FQM-02468.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter E. Kloeden or Christian Pötzsche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kloeden, P.E., Pötzsche, C. (2013). Nonautonomous Dynamical Systems in the Life Sciences. In: Kloeden, P., Pötzsche, C. (eds) Nonautonomous Dynamical Systems in the Life Sciences. Lecture Notes in Mathematics(), vol 2102. Springer, Cham. https://doi.org/10.1007/978-3-319-03080-7_1

Download citation

Publish with us

Policies and ethics