Advertisement

Fault diagnosis viewed as a left invertibility problem

  • Rafael Martinez-Guerra
  • Juan Luis Mata-Machuca
Chapter
Part of the Understanding Complex Systems book series (UCS)

Abstract

This chapter deals with the fault diagnosis problem, some new properties are found using the left invertibility condition through the concept of differential output rank. Two schemes of nonlinear observers are used to estimate the fault signals for comparison purposes, one of these is a proportional reduced order observer (see Lemma 3.1) and the other is a sliding mode observer. The methodology is tested in a real time implementation of a three-tank system.

Keywords

Fault Detection Fault Diagnosis Differential Algebra Transcendence Degree Tank System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Alcorta García, P. Frank P (1997) Deterministic nonlinear observer-based approaches to fault diagnosis: a survey. Control Eng. Pract., 5, 663–670.Google Scholar
  2. 2.
    P. Frank, X. Ding (1977) Survey of robust residual generation and evaluation methods in observer-based fault detection systems. Journal of Process Control, 7, 403–424.CrossRefGoogle Scholar
  3. 3.
    A. Willsky (1976) A survey of design methods in observer-based fault detection systems. Automatica, 1(2), 601–611.MathSciNetCrossRefGoogle Scholar
  4. 4.
    Massoumnia, G. Verghese, A. Willsky (1989) Failure detection and identification. IEEE Transactions on Automatic Control, 34, 316–321.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    J. Chen, R. Patton (1999) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic Publishers.Google Scholar
  6. 6.
    M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki (2003) Diagnosis and fault-tolerant control, Springer, Berlin.CrossRefzbMATHGoogle Scholar
  7. 7.
    H. Noura, D. Theilliol, J.C. Ponsart, A. Chamseddine (2009) Fault-tolerant control systems: design and practical applications, Springer, London.CrossRefGoogle Scholar
  8. 8.
    C. De Persis, A. Isidori (2001) A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, 46(6), 853–865.CrossRefzbMATHGoogle Scholar
  9. 9.
    C. Join, J.C. Ponsart, D. Sauter, D. Theilliol (2005) Nonlinear filter design for fault diagnosis: application to the three-tank system. IEE Proc. Control Theory Appl., 152(1), 55–64.CrossRefGoogle Scholar
  10. 10.
    M. Fliess, C. Join, H. Mounier (2005) An introduction to nonlinear fault diagnosis with an application to a congested internet router. Advances in Communication Control Networks, C. T. Abdallah, J. Chiasson (Eds), Lecture Notes, Conf. Inf. Sci., Springer, Berlin, 308, 327–343.Google Scholar
  11. 11.
    C. Join, H. Sira-Ramírez, M. Fliess (2005) Control of an uncertain three tank system via on-line parameter identification and fault detection. In Proc. of 16th Triennial World IFAC Conference (IFAC’05), Prague, Czech Republic.Google Scholar
  12. 12.
    M. Fliess (1988) Nonlinear Control Theory and Differential Algebra. In Modelling and Adaptive Control, Byrnes C. Kurzhanski A. (eds.). Lecture Notes in Control and Information Sciences, 105, Springer, Berlin, 134–145.Google Scholar
  13. 13.
    M. Fliess, C. Join, H. Sira-Ramírez (2004) Robust residual generation for nonlinear fault diagnosis: an algebraic setting with examples. International Journal of Control, 14(77).Google Scholar
  14. 14.
    M. Fliess, C. Join, H. Sira-Ramirez (2008) Non-linear estimation is easy, Int. J. Modelling Identification and Control, 4(1), 12–27.CrossRefGoogle Scholar
  15. 15.
    A.M. Nagy, B. Marx, G. Mourot, G. Schutz, J. Ragot (2009) State estimation of the three-tank system using a multiple model. In IEEE Conference on Decision and Control, Shanghai, P.R. China, 7795–7800.Google Scholar
  16. 16.
    Amira DTS200: Laboratory setup three tank system, Amira Gmbh, Duisburgh, Germany, 1996.Google Scholar
  17. 17.
    D. Theilliol, H. Noura, J.C. Ponsart (2002) Fault diagnosis and accommodation of a threetank system based on analytical redundancy. ISA Transactions, 41, 365–382.CrossRefGoogle Scholar
  18. 18.
    E. Kolchin (1973) Differential Algebra and Algebraic Groups. New York, Academic Press.zbMATHGoogle Scholar
  19. 19.
    M. Fliess (1986) A note on invertibility of nonlinear input–output differential systems. System & Control Letters, 8, 147–151.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    H.K. Khalil (2002) Nonlinear Systems. Prentice Hall.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rafael Martinez-Guerra
    • 1
  • Juan Luis Mata-Machuca
    • 2
  1. 1.Departamento de Control AutomaticoCINVESTAV-IPNMexico, D.F.Mexico
  2. 2.Unidad Profesional Interdisciplinaria en Ingenieria y Tecnologias AvanzadasInstituto Politecnico Nacional Academia de MecatronicaMexico, D.F.Mexico

Personalised recommendations