Skip to main content

Diagnosis of nonlinear systems using the concept of differential transcendence degree

  • Chapter
  • First Online:
Fault Detection and Diagnosis in Nonlinear Systems

Part of the book series: Understanding Complex Systems ((UCS))

  • 1635 Accesses

Abstract

In this chapter we tackle the diagnosis problem in nonlinear systems by using the concept of differential transcendence degree of a differential field extension, as well as, we consider the algebraic observability concept of the variable which models the failure presence for the solvability of the diagnosis problem. The construction of a reduced order uncertainty observer to estimate the fault variable is the main ingredient in our approach. Finally, three examples are presented in order to apply the proposed methodology. Numerical simulations of these examples are presented to illustrate the effectiveness of the suggested approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Alcorta-Garcia, P.M. Frank (1997) Deterministic nonlinear observer-based approaches to fault diagnosis:a survey. Control Eng. Practice, 5, 663–670.

    Article  Google Scholar 

  2. J. Chen, R.J. Patton (1998) Robust model-based fault diagnosis for dynamic systems. Kluwer Academic, Boston.

    Google Scholar 

  3. J. Chen, R.J. Patton, H.Y. Zhang (1996) Design of unknown input observers and robust fault detection filters. International Journal of Control, 63, 85–105.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. De Persis, A. Isidori (2001) A geometric approach to nonlinear fault detection and isolation. IEEE Transactions on Automatic Control, 46(6), 853–865.

    Article  MATH  Google Scholar 

  5. S. Diop, M. Fliess (1991) Nonlinear, observability, identifiability and persistent trajectories. In IEEE Conference on Decision and Control, Brighton, England, 714–719.

    Google Scholar 

  6. S. Diop, R. Martínez-Guerra (2001) An algebraic and data derivative information approach to nonlinear system diagnosis. In European Control Conference, Porto, Portugal, 2334–2339.

    Google Scholar 

  7. S. Diop, R. Martínez-Guerra (2001) On an algebraic and differential approach of nonlinear system diagnosis. In IEEE Conference on Decision and Control, Orlando, FL, USA, 585–589.

    Google Scholar 

  8. M. Fliess (1986) A note on the invertibility of nonlinear input-output differential systems. Systems & Control Letters, 8, 147–151.

    Article  MathSciNet  MATH  Google Scholar 

  9. P.M. Frank (1990) Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: a survey. Automatica, 26, 459–474.

    Article  MATH  Google Scholar 

  10. P.M. Frank (1994) Enhancement of robustness in observer-based fault detection, International Journal of Control, 59, 955–981.

    Article  MathSciNet  MATH  Google Scholar 

  11. P.M. Frank, X. Ding (1994) Frequency domain approach to optimally robust residual generation and evaluation for model based fault diagnosis. Automatica, 30(5), 789–804.

    Article  MATH  Google Scholar 

  12. P.M. Frank, X. Ding (1997) Survey of robust residual generation and evaluation methods in observer-based fault detection systems, Journal of Process Control, 7, 403–424.

    Article  Google Scholar 

  13. H. Hammouri, M. Kinnaert, E.H. El Yaagoubi (1999) Observer based approach to fault detection and isolation for nonlinear systems. IEEE Transactions on Automatic Control, 44(10).

    Google Scholar 

  14. R. Iserman (1984) Process fault detection based on modeling and estimation methods: a survey. Automatica, 20(4), 387–404.

    Article  Google Scholar 

  15. R. Iserman, P. Balle (1997) Trends in the application of model-based fault detection and diagnosis of technical process. Control Eng. Practice, 5, 709–719.

    Article  Google Scholar 

  16. P. Kudva, N. Viswanadham, A. Ramakrishna (1980) Observers for linear systems with unknown inputs. IEEE Transactions on Automatic Control, 25, 113–115.

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Martínez-Guerra, R. Garrido, A. Osorio-Mirón (2002) High-gain nonlinear observers for the fault detection problem: application to a bioreactor. In IFAC Publications, Editorial Elsevier Sc. Ltd, Nonlinear Control Systems, Edits: Kurzhanski/Fradkov, Vol.3, ISBN 0-08- 043560-2, 1567–1572.

    Google Scholar 

  18. R. Martínez-Guerra, R. Garrido, A. Osorio-Mirón (2001) Parametric and state estimation by means of high-gain nonlinear observers: application to a bioreactor. In American Control Conference, Arlington, Virginia, Washington, D.C., USA, 4603–4604.

    Google Scholar 

  19. M.A. Massoumnia (1986) A geometric approach to the synthesis of failure detection filters. IEEE Transactions on Automatic Control, 31(3), 389–396.

    MathSciNet  Google Scholar 

  20. M.A. Massoumnia, G.C. Verghese, A.S. Willsky (1989) Failure detection and identification, IEEE Transactions on Automatic Control, 34, 316–321.

    Article  MathSciNet  MATH  Google Scholar 

  21. R.J. Patton, P.M. Frank, R.N. Clark (1989) Fault diagnosis in dynamical systems, theory and application, Prentice Hall.

    Google Scholar 

  22. M. Perrier, J. Feyo de Azevedo, E.C. Ferreira, D. Dochain (2000) Tuning of observer-based estimators: Theory and application to the on-line estimation of kinetic parameters. Control Eng. Practice, 8, 377–388.

    Article  Google Scholar 

  23. R. Seliger, P.M. Frank (2000) Robust observer-based fault diagnosis in nonlinear uncertain systems. In Issues of fault diagnosis for dynamic systems, Eds. Patton, Frank, Clark, Springer, 145–187.

    Google Scholar 

  24. M. Staroswiecki, G. Comtet-Varga (1999) Fault detectability and isolability in algebraic dynamic systems, In Proc. of European Control Conference (ECC99), Karlsruhe, Germany.

    Google Scholar 

  25. F. Szigeti, C.E. Vera, J. Bokor, A. Edelmayer (2001) Inversion based fault detection and isolation. In IEEE Conference on Decision and Control, Orlando, FL, USA, 1005–1010.

    Google Scholar 

  26. A. Tornambe (1989) Use of asymptotic observers having high-gain in the state and parameter estimation. In IEEE Conference on Decision and Control, Tampa, FL, USA, 1791–1794.

    Google Scholar 

  27. N. Viswanadham, R. Srichander (1987) Fault detection using unknown-input observers. Control Theory and Advanced Technology, 3, 91–101.

    MathSciNet  Google Scholar 

  28. A.S. Willsky (1976) A survey of design methods for failure detection in dynamic systems, Automatica, 12, 601–611.

    Article  MathSciNet  MATH  Google Scholar 

  29. W‥unnenberg (1990) Observer-based fault detection in dynamic system. VDI-Fortschrittsber., VDI-Verlag, Reihe 8, Nr. 222, D‥usseldorf, Germany.

    Google Scholar 

  30. F. Szigeti, C.E. Vera, J. Bokor (2001) Inversion based fault detection and isolation. In IEEE Conference of Decision and Control, Orlando, FL, USA, 1005–1010.

    Google Scholar 

  31. J.C. Cruz-Victoria, R. Martínez-Guerra, J.J. Rincón-Pasaye (2008) On nonlinear systems diagnosis using differential and algebraic methods. Journal of the Franklin Institute, 345, 102–118.

    Article  MATH  Google Scholar 

  32. R. Martínez-Guerra, J.L. Mata-Machuca, J.J. Rincón-Pasaye (2013) Fault diagnosis viewed as a left invertibility problem. ISA Transactions, 52, 652–661.

    Article  Google Scholar 

  33. R. Martínez-Guerra, J. de León-Morales (1997) On nonlinear observers. In Proc. Conference on Control Applications (CCA), Hartford, Connecticut, USA, 324–328.

    Google Scholar 

  34. R. Martínez-Guerra, S. Diop (2004) Diagnosis of nonlinear systems: an algebraic and differential approach. IEE Proceedings – Control Theory and Applications, 151, 130–135.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martinez-Guerra, R., Mata-Machuca, J.L. (2014). Diagnosis of nonlinear systems using the concept of differential transcendence degree . In: Fault Detection and Diagnosis in Nonlinear Systems. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-03047-0_3

Download citation

Publish with us

Policies and ethics