Skip to main content

Spiral Shocks, Cooling, and the Origin of Star Formation Rates

  • Conference paper
  • First Online:
Book cover The Labyrinth of Star Formation

Part of the book series: Astrophysics and Space Science Proceedings ((ASSSP,volume 36))

  • 1739 Accesses

Abstract

We have performed the first numerical simulations to resolve the star formation process on sub-parsec scales, whilst also following the dynamics of the interstellar medium (ISM) on galactic scales. The warm low density ISM gas flows into the spiral arms where orbit crowding produces the shock formation of dense clouds, held together temporarily by their external pressure. Cooling allows the gas to be compressed to sufficiently high densities that local regions collapse under their own gravity and form stars. The star formation rates follow a Schmidt-Kennicutt \(\varSigma _{\mathrm{SFR}} \propto \varSigma _{\mathrm{gas}}^{1.4}\) type relation with the local surface density of gas while following a linear relation with the dense cold gas. Cooling is the primary driver of star formation and the star formation rates as it determines the amount of cold gas available for gravitational collapse.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bate M. R., Bonnell I. A., Price N. M., 1995, MNRAS, 277, 362

    ADS  Google Scholar 

  2. Bonnell I. A., Dobbs C. L., Robitaille T., Pringle J. E., 2006, MNRAS, 365, 37

    Article  ADS  Google Scholar 

  3. Bonnell I. A., Dobbs C. L., Smith R. J., 2013, MNRAS, in press

    Google Scholar 

  4. Bonnell I. A., Smith R. J., Clark P. C., Bate M. R., 2011, MNRAS, 410, 2339

    Article  ADS  Google Scholar 

  5. Dobbs C. L., 2008, MNRAS, 391, 844

    Article  ADS  Google Scholar 

  6. Dobbs C. L., Bonnell I. A., 2007, MNRAS, 374, 1115

    Article  ADS  Google Scholar 

  7. Heiderman A., Evans II N. J., Allen L. E., Huard T., Heyer M., 2010, ApJ, 723, 1019

    Article  ADS  Google Scholar 

  8. Heitsch F., Slyz A. D., Devriendt J. E. G., Hartmann L. W., Burkert A., 2006, ApJ, 648, 1052

    Article  ADS  Google Scholar 

  9. Kennicutt R. C., Evans N. J., 2012, ARA&A, 50, 531

    Article  ADS  Google Scholar 

  10. Kitsionas S., Whitworth A. P., 2007, MNRAS, 378, 507

    Article  ADS  Google Scholar 

  11. Koyama H., Inutsuka S.-I., 2000, ApJ, 532, 980

    Article  ADS  Google Scholar 

  12. Krumholz M. R., Cunningham A. J., Klein R. I., McKee C. F., 2010, ApJ, 713, 1120

    Article  ADS  Google Scholar 

  13. Larson R. B., 1981, MNRAS, 194, 809

    ADS  Google Scholar 

  14. Smith R. J., Longmore S., Bonnell I., 2009, MNRAS, 400, 1775

    Article  ADS  Google Scholar 

  15. Vázquez-Semadeni E., Gómez G. C., Jappsen A. K., Ballesteros-Paredes J., González R. F., Klessen R. S., 2007, ApJ, 657, 870

    Article  ADS  Google Scholar 

  16. Whitworth A. P., Bhattal A. S., Chapman S. J., Disney M. J., Turner J. A., 1994, A&A, 290, 421

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Bonnell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bonnell, I., Dobbs, C.L., Smith, R.J. (2014). Spiral Shocks, Cooling, and the Origin of Star Formation Rates. In: Stamatellos, D., Goodwin, S., Ward-Thompson, D. (eds) The Labyrinth of Star Formation. Astrophysics and Space Science Proceedings, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-319-03041-8_27

Download citation

Publish with us

Policies and ethics