Skip to main content

Ad-hoc Analysis of Genetic Pathways

  • Chapter
  • First Online:
High-Performance In-Memory Genome Data Analysis

Part of the book series: In-Memory Data Management Research ((IMDM))

  • 2559 Accesses

Abstract

Biological pathways describe different processes and relations within a cell and help to understand the human body. Therefore, they can aid in finding the cause of a genetic disease and thus support treatment decisions. However, identifying pathways affected by mutations based on their internal connections is a complex task. Today, most pathway databases offer only a single keyword search to find pathways. Only a small subset of the databases offer a more complex analysis, such as the ConsensusPathDB and hiPathDB, use an approach based on the relationships between genes. In this contribution, I propose a prototype for analyzing pathways based on their internal topology and relations. Over the course of several months, I aggregated the data of multiple pathway databases. Using in-memory database technology, the prototype traverses the underlying graph of these data to find affected pathways based on a set of genes. The possibility to traverse the pathway graph on the fly might help to find new relationships between diseases and pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bader GD, Cary MP, Sander C (2006) Pathguide: A Pathway Resource List. Nucleic Acids Research 34(Suppl 1):D504–D506

    Google Scholar 

  2. Bastian M, Heymann S, Jacomy M (2009) Gephi: An Open Source Software for Exploring and Manipulating Networks. In: ICWSM

    Google Scholar 

  3. Bigg NL et al. (1976) Graph Theory 1736-1936. Oxford University Press on Demand

    Google Scholar 

  4. Bornhövd C et al. (2013) Flexible Information Management, Exploration, and Analysis in SAP HANA. In: Proceedings of the International Conference on Data Technologies and Applications, pp 15–28

    Google Scholar 

  5. Brandes U et al. (2010) Graph Markup Language (GraphML). In: Tamassia R (ed) Handbook of Graph Drawing and Visualization, CRC Press, chap 16, pp 517–541

    Google Scholar 

  6. Buerli M (2012) The Current State of Graph Databases. Technical report, Department of Computer Science, Cal Poly San Luis Obispo

    Google Scholar 

  7. Cattell R (2011) Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record 39(4):12–27

    Article  Google Scholar 

  8. Cytoscape Consortium (2012) Cytoscape User Manual: Network Formats. http://wiki.cytoscape.org/Cytoscape_User_Manual/Network_Formats. Accessed Sep 23, 2013

  9. Demir E et al. (2010) The BioPAX Community Standard for Pathway Data Sharing. Nature Biotechnology 28(9):935–942

    Article  PubMed  CAS  Google Scholar 

  10. Draghici S et al. (2007) A Systems Biology Approach for Pathway Level Analysis. Genome Research 17(10):1537–1545

    Article  PubMed  CAS  Google Scholar 

  11. Färber F et al. (2012) SAP HANA Database: Data Management for Modern Business Applications. Sigmod Record 40(4):45–51

    Article  Google Scholar 

  12. Fernald GH et al. (2011) Bioinformatics Challenges for Personalized Medicine. Bioinformatics Journal 27(13):1741–1748

    Article  CAS  Google Scholar 

  13. Friedman C et al. (2001) GENIES: A Natural-language Processing System for the Extraction of Molecular Pathways from Journal Articles. Bioinformatics Journal 17(Suppl 1):74–S82

    Google Scholar 

  14. Goh KI et al. (2007) The Human Disease Network. Proceedings of the National Academy of Sciences 104(21):8685–8690

    Google Scholar 

  15. Gray KA et al. (2013) Genenames.org: The HGNC Resources in 2013. Nucleic Acids Research 41(D1):D545–D552

    Google Scholar 

  16. Green, ML and Karp, PD (2006) The Outcomes of Pathway Database Computations depend on Pathway Ontology. Nucleic Acids Research 34(13):3687–3697

    Article  PubMed  CAS  Google Scholar 

  17. Hecht R, Jablonski S (2011) NoSQL evaluation: A use case oriented survey. In: International Conference on Cloud and Service Computing (CSC), 2011, IEEE, pp 336–341

    Google Scholar 

  18. HuckaMet al. (2010) The Systems Biology Markup Language (SBML): Language Specification for Level 3 Version 1 Core. http://precedings.nature.com/documents/4959/version/1/files/npre20104959-1.pdf. Accessed Sep 23, 2013

  19. Kamburov A et al. (2013) The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Research 41(D1):D793–D800

    Google Scholar 

  20. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28(1):27–30

    Article  PubMed  CAS  Google Scholar 

  21. Kanehisa M et al. (2012) KEGG for Integration and Interpretation of Largescale Molecular Data Sets. Nucleic Acids Research 40(D1):D109–D114

    Google Scholar 

  22. Kanehisa Laboratories (2012) KEGG PATHWAY: Colorectal Cancer - Reference Pathway. http://www.genome.jp/kegg-bin/show_pathway?org_name=map&mapno=05210. Accessed Sep 23, 2013

  23. Kelder T et al. (2012) WikiPathways: Building Research Communities on Biological Pathways. Nucleic Acids Research 40(D1):D1301–D1307

    Google Scholar 

  24. Kerrien S et al. (2007) Broadening the Horizon: Level 2.5 of the HUPO-PSI Format for Molecular Interactions. BMC biology 5(1):44

    Article  PubMed  Google Scholar 

  25. Khatri P, Sirota M, Butte AJ (2012) Ten Years of Pathway Analysis: Current Approaches and Outstanding Challenges. PLoS Computational Biology 8(2)

    Google Scholar 

  26. Kirouac DC et al. (2012) Creating and Analyzing Pathway and Protein Interaction Compendia for Modelling Signal Transduction Networks. BMC Systems Biology 6(1):29

    Article  PubMed  Google Scholar 

  27. Knöpfel A, Gröne B, Tabeling P (2005) Fundamental Modeling Concepts. Wiley, West Sussex UK

    Google Scholar 

  28. Kono N et al. (2009) Pathway Projector: Web-based Zoomable Pathway Browser using KEGG Atlas and Google Maps API. PLoS One 4(11)

    Google Scholar 

  29. Leavitt N (2010) Will NoSQL Databases live up to their Promise? IEEE Computer 43(2):12–14

    Article  Google Scholar 

  30. Matthews L et al. (2009) Reactome Knowledgebase of Human Biological Pathways and Processes. Nucleic Acids Research 37(suppl 1):D619–D622

    Google Scholar 

  31. Miller JJ (2013) Graph Database Applications and Concepts with Neo4. In: Proceedings of the 2013 Southern Association for Information Systems

    Google Scholar 

  32. Neo4J Developers (2012) Neo4J. Graph NoSQL Database

    Google Scholar 

  33. Nishimura D (2001) BioCarta. The Computer Software Journal for Scient 2(3):117–120

    Google Scholar 

  34. Peng G et al. (2009) Gene and Pathway-based Second-wave Analysis of Genome-wide Association Studies. European Journal of Human Genetics 18(1):111–117

    Article  Google Scholar 

  35. Pico AR et al. (2008) WikiPathways: Pathway Editing for the People. PLoS biology 6(7):184

    Google Scholar 

  36. Plattner H (2013) A Course in In-Memory Data Management: The Inner Mechanics of In-Memory Databases. Springer

    Google Scholar 

  37. Python Software Foundation (2013) 26.6. Timeit - Measure Execution Time of Small Code Snippets. http://docs.python.org/2/library/timeit.html. Accessed Sep 23, 2013

  38. Ramanan VK et al. (2012) Pathway Analysis of Genomic Data: Concepts, Methods and Prospects for Future Development. Trends in Genetics 28(7):323–332

    Article  PubMed  CAS  Google Scholar 

  39. Rodriguez MA (2013) Gremlin GitHub. http://github.com/tinkerpop/gremlin/wiki. Accessed Sep 23, 2013

  40. Rodriguez MA, Neubauer P (2010) Constructions from Dots and Lines. Bulletin of the American Society for Information Science and Technology 36(6):35–41

    Article  Google Scholar 

  41. Romero P et al. (2004) Computational Prediction of Human Metabolic Pathways from the Complete Human Genome. Genome Biology 6(1):R2

    Article  PubMed  Google Scholar 

  42. Rudolf M et al. (2013) The Graph Story of the SAP HANA Database. Proceedings of the 15 GI-Fachtagung Datenbanksysteme für Business, Technologie und Web

    Google Scholar 

  43. Safran M et al. (2010) GeneCards Version 3: The Human Gene Integrator. The Journal of Biological Databases and Curation 2010

    Google Scholar 

  44. Schaefer CF et al. (2009) PID: The Pathway Interaction Database. Nucleic Acids Research 37(suppl 1):D674–D679

    Google Scholar 

  45. Strauch C (2011) NoSQL Databases. http://www.christof-strauch.de/nosqldbs.pdf. Accessed Sep 23, 2013

  46. Strömbäck L, Lambrix P (2005) Representations of Molecular Pathways: An Evaluation of SBML, PSI MI and BioPAX. Bioinformatics Journal 21(24):4401–4407

    Article  Google Scholar 

  47. Yu N et al. (2012) hiPathDB: A Human-integrated Pathway Database with Facile Visualization. Nucleic Acids Research 40(D1):D797–D802

    Google Scholar 

  48. Zhao J et al. (2011) Pathway-based Analysis using reduced Gene Subsets in Genome-wide Association Studies. BMC Bioinformatics 12(1):17

    Article  PubMed  Google Scholar 

  49. Zvelebil M, Baum J (2007) Understanding Bioinformatics. Garland Science

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Müller, D. (2014). Ad-hoc Analysis of Genetic Pathways. In: Plattner, H., Schapranow, MP. (eds) High-Performance In-Memory Genome Data Analysis. In-Memory Data Management Research. Springer, Cham. https://doi.org/10.1007/978-3-319-03035-7_7

Download citation

Publish with us

Policies and ethics