Advertisement

Current–Voltage and Capacitance–Voltage Characteristics of Ni/p-Si (100) Schottky Diode Over a Wide Temperature Range

  • Rajender Kumar
  • Subhash Chand
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In this study the current–voltage (I–V) and capacitance–voltage (C–V) characteristics of metal semiconductor Ni/p-Si(100) based Schottky diode on p- type silicon measured over a wide temperature range (60–300 K) have been studied on the basis of thermionic emission diffusion mechanism and the assumption of a Gaussian distribution of barrier heights. The parameters ideality factor, barrier height and series resistance are determined by performing plots from the forward bias current–voltage (I–V) and reverse bias capacitance–voltage (C–V) characteristics. Thus, the barrier height for Ni/p-Si(100) Schottky diode obtained between 0.2053 and 0.513 eV, and the ideality factor (η) between 8.8792 and 2.4351 for 60–300 K range. A simple method, involving the use of ϕb versus 1/T data, is suggested to gather evidence for the occurrence of a Gaussian distribution of barrier heights and obtain value of standard deviation 0.06402 (60–300 K).

Keywords

Schottky diode I–V and C–V characteristics Thermionic emission diffusion mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.M. Sze, Physics of Semiconductor Devices, 2nd ed., (Wiley, New York, 1981).Google Scholar
  2. 2.
    E.H.Rhoderick, R.H. Williams, Metal-Semiconductor Contacts,(ClarendonPress,Oxford,1988).Google Scholar
  3. 3.
    R.T. Tung, J vac Sci Technol B 11(4), 1546 (1993).Google Scholar
  4. 4.
    S. Zhu, R.L. Van Meirhaeghe, S. Forment, Ru G, Li B. Solid State Electron 48, 29 (2004)Google Scholar
  5. 5.
    D.J. Coe, E.H. Rhoderick, J. Appl. Phys. D 9, 965(1976).Google Scholar
  6. 6.
    M.Y. Ali, M. Tao, J Appl Phys 101(10),103 (2007).Google Scholar
  7. 7.
    G. Guler, O. Gullu, O.F. Bakkaloglu, A. Turut, Physica B 403, 2211 (2008).Google Scholar
  8. 8.
    M.E. Kiziroglu, A.A. Zhukov, X. Lia, D.C. Gonzalez, P.A.J. de Groot, P.N. Bartlett, et al. Solid State Commun 140, 508-13(2006).Google Scholar
  9. 9.
    P.P. Sahay, M. Shamsuddin, R.S. Srivastava. Microelectron J 23, 625 (1992).Google Scholar
  10. 10.
    Werner J H and Guttler H H J. Appl. Phys. 69, 1522–33 (1991)Google Scholar
  11. 11.
    Chand S and Kumar J Semicond. Sci. Technol. 10,1680–8(1995)CrossRefGoogle Scholar
  12. 12.
    Chand S and Kumar J Semicond. Sci. Technol. 11, 1203–8 (1995)Google Scholar
  13. 13.
    Chand S and Kumar J Appl. Phys. A 65, 497–503 (1997)Google Scholar
  14. 14.
    Song Y P, Meirhaeghe R L V, Laflere W H and Cardon F Solid-State Electron.29, 633-8(1986).Google Scholar
  15. 15.
    Chin V W L, Green M A and Storey J W V Solid-State Electron. 33, 299–308(1990)Google Scholar
  16. 16.
    Dobrocka E and Osvald J Appl. Phys. Lett. 65, 575–7 (1994).CrossRefGoogle Scholar
  17. 17.
    Palm H, Arbes M and Schulz M Phys. Rev. Lett. 71, 2224–7(1993)CrossRefGoogle Scholar
  18. 18.
    Wittmer M, Luthy W, Studer B and Melchior H Solid-State Electron. 24, 141–5 (1981)Google Scholar
  19. 19.
    V.Saxena, R. Prakash,Polym. Bull. 45, 267 (2000).Google Scholar
  20. 20.
    E.H. Nicollian, A. Goetzberger, Appl. Phys. Lett. 7,216 (1965).CrossRefGoogle Scholar
  21. 21.
    B. Akkal, Z. Benamara, B. Gruzza, L. Bideux, Vacuum 57,219(2000).CrossRefGoogle Scholar
  22. 22.
    R.T. Tung, Mater Sci Eng R 36, 138 (2001).Google Scholar
  23. 23.
    H.C. Card, E.H.Rhoderick, J. Phys. D 4,1589 (1971).Google Scholar
  24. 24.
    S. Altindal, S. Karadeniz, N. Tugluoglu, A. Tataroglu, Solid State Electron. 47, 1847Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsNational Institute of TechnologyHamirpurIndia

Personalised recommendations