Thermal Sintering Improves the Short Circuit Current of Solar Cells Sensitized with CdTe/CdSe Core/Shell Nanocrystals

  • Padmashri Patil
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Aqueous colloidal solution of CdTe/CdSe core/shell nanocrystals used in this sensitized solar cells were synthesized using a wet chemical method. These colloidal nanocrystals were capped with Mercapto-Succinic Acid, which is a bi-functional linker molecule. The nanocrystal sensitized TiO2 electrodes were prepared by pipetting aqueous solution of MSA capped CdTe/CdSe nanocrystal onto the mesoporous TiO2 followed by making a ZnS window layer. We found that, presence of Mercapto-Succinic Acid significantly affects short circuit current and thereby the overall efficiency of solar cell as it is insulating in nature. Sintering at 400OC seems to help in increasing charge transfer from nanocrystals to TiO2. This in turns actually shows up as a large increase in short circuit current density by 186 % and efficiency by 216 % compared to non-sintered cells. Parameters for the highest efficiency cell are Jsc = 8 mA/cm2, Voc = 0.53 V and η = 1.74 %.


Photovoltaics Nanocrystals Core/Shell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Author wants to thank Dept. of Science and Technology, India for DST Nano Unit grant SR/NM/NS-42/2009 and IISER-Pune for their financial support. Author thanks Dr. Shouvik Datta of IISER-Pune for guidance and valuable discussions. Degussa P25 TiO2 material was a generous gift from Evonik Industries. Author also wants to thank the research group of Dr. Ogale, NCL, Pune for their help in TiO2 processing.


  1. 1.
    P.V. Kamat, J. Phys. Chem. C, 112, 18737 (2008).CrossRefGoogle Scholar
  2. 2.
    H. K. Jun, M. A. Careem and A. K. Arof, Renewable energy and sustainable energy reviews,22, 148(2013).Google Scholar
  3. 3.
    A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson and J. C. Johnson, Chem. Rev.110, 6873 (2010).Google Scholar
  4. 4.
    X.-Y. Yu, B.-X. Lei, D.-B. Kuang and C.-Y. Su, Chem. Sci., 2, 1396 (2011).CrossRefGoogle Scholar
  5. 5.
    Z. Ning, H. Tian, C. Yuan, Y. Fu, H. Qin, L. Sun and H. Agren, Chem. Commun.,47, 1536 (2011).CrossRefGoogle Scholar
  6. 6.
    P. K. Santra and P.V. Kamat, J. Am.Chem. Soc. 134, 2508 (2012).Google Scholar
  7. 7.
    Y.-L. Lee and Y.-S. Lo, Adv. Funct. Mater. 19, 604 (2009).CrossRefGoogle Scholar
  8. 8.
    P. Peng, D. J. Milliron., S. M. Hughes, J. C. Johnson, A. P. Alivistos, R. J. Saykally, Nano Lett.5, 1809 (2005).Google Scholar
  9. 9.
    A. Piryatinksi, S. A. Ivanov, S. Tretiak, V. I. Klimov. Nano Lett.7, 108 (2007).Google Scholar
  10. 10.
    C.-H. Chuang, T. L. Doane, S. S. Lo, G. D. Scholes and C. Burda, ACS Nano, 5, 6016 (2011).CrossRefGoogle Scholar
  11. 11.
    Y.-J. Shen and Y.-L. Lee, Nanotechnology, 19, 045602 (2008).CrossRefGoogle Scholar
  12. 12.
    N. Guijarro, T. Lana-Villarreal, I. Mora-Sero, J. Bisquert, R. Gomez, J. Phys. Chem. C, 113, 4208 (2009).CrossRefGoogle Scholar
  13. 13.
    Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua and X. Zhong ACS Nano, 6, 3982, (2012).CrossRefGoogle Scholar
  14. 14.
    H. Zhong, Y. Zhou, Y. Yang and Y. Li, J. Phys. Chem. C, 111, 6538, (2007).CrossRefGoogle Scholar
  15. 15.
    P. Padmashri, C. Latlanzuala, Manuscript submitted.Google Scholar
  16. 16.
    J.-Y. Liao, B.-X. Lei, D.-B. Kuang and C.-Y. Su, Energy Environ. Sci., 4, 4079 (2011).CrossRefGoogle Scholar
  17. 17.
    Z. Pan, H. Zhang, K. Cheng, Y. Hou, J. Hua, and X. Zhong, ACS Nano, 6, 3982 (2012).CrossRefGoogle Scholar
  18. 18.
    Y.-L. Lee and C.-H. Chang, J. Power Sources 185, 584 (2008).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of PhysicsIndian Institute of Science Education and Research PunePuneIndia

Personalised recommendations