Modeling Charge Control in Heterostructure Nanoscale Transistors

  • Dhirendra Vaidya
  • Saurabh Sant
  • Arjun Hegde
  • Saurabh Lodha
  • Udayan Ganguly
  • Swaroop Ganguly
Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We present a multi-scale methodology for the modeling of charge control in multigate field-effect-transistors (MuGFETs) comprising alternative channel materials, including heterostructures. Using SiGe and Ge as examples, we will show how bandstructure calculations for material parameters may be connected to technology-computer-aided design (TCAD) simulations for the ideal charge–voltage characteristics. Lastly, we outline a custom simulation tool that includes interface and border trap effects in addition to usual electrostatics and quantization.

Keywords

Modeling TCAD MugFET Alternative channel materials Heterostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors thank Mr. Hardik Mehta, Ms. Sindhu Hari, Prof. Souvik Mahapatra, Dr. A. Nainani, Dr. M. Abraham, Dr. L. Smith, Dr. F.O. Heinz, and Dr. V. Moroz for helpful discussions. The authors acknowledge support from the Centre of Excellence in Nanoelectronics at IIT Bombay (funded by the Department of Electronics and Information Technology), Applied Materials Inc. and Synopsys Inc.

References

  1. 1.
    International Technology Roadmap for Semiconductors, (ITRS, 2011).Google Scholar
  2. 2.
    S. Sant, S. Lodha, U. Ganguly, S. Mahapatra, F.O. Heinz, L. Smith, V. Moroz and S. Ganguly, J. Appl. Phys., 113, 033708 (2013).Google Scholar
  3. 3.
    Sentaurus User Guide F-2011.09, (Synopsys Inc., 2011).Google Scholar
  4. 4.
    H. Mehta, S. Lodha, U. Ganguly and S. Ganguly, IEEE RSM2013 Proc., (2013).Google Scholar
  5. 5.
    L. Kleinmann and J.C. Phillips, Phys. Rev., 118, 1153 (1958); and references therein.Google Scholar
  6. 6.
    J.A. Nelder and R. Mead, Comp. J., 7, 308 (1965).Google Scholar
  7. 7.
    R. Braunstein, A. Moore and F. Herman, Phys. Rev., 109, 695 (1958).CrossRefGoogle Scholar
  8. 8.
    M. Rieger and P. Vogl, Phys. Rev., 48, 276 (1993); M. Ferhat, A. Zaoui, B. Khelifa and H. Aourag, Solid-state Communications, 91, 407 (1994).Google Scholar
  9. 9.
    J.M. Luttinger and W. Kohn, Phys. Rev., 97, 869 (1955).CrossRefGoogle Scholar
  10. 10.
    M.V. Fischetti and S.E. Laux, J. Appl. Phys., 80, 2236 (1994).Google Scholar
  11. 11.
    F. Stern, Phys. Rev. B, 5, 4891 (1972).CrossRefGoogle Scholar
  12. 12.
    M.G. Ancona and H.F. Tiersten, Phys. Rev., 35, 7959 (1987).Google Scholar
  13. 13.
    E.H. Nicollian and J.R. Brews, MOS (Metal-Oxide-Semiconductor) Physics and Technology, (Wiley Interscience, Hoboken, 1958); Y. Yuan, L. Wang, B. Yu, J. Ahn, P. Myintyre, P.M. Asbeck, M. J.W. Rodwell, Y. Taur, IEEE Electron Dev. Lett., 32, 487 (2011).Google Scholar
  14. 14.
    D.A. Antoniadis, I Aberg, C Ni Cleirigh, O.M. Nayfeh, A. Khakiforooz, J.L. Hoyt, IBM Journal of Research and Development, 50, 363 (2006).CrossRefGoogle Scholar
  15. 15.
    M.M. Satter and A. Haque, Solid State Electronics, 54, 621 (2010).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dhirendra Vaidya
    • 1
  • Saurabh Sant
    • 1
  • Arjun Hegde
    • 1
  • Saurabh Lodha
    • 1
  • Udayan Ganguly
    • 1
  • Swaroop Ganguly
    • 1
  1. 1.Indian Institute of TechnologyBombayIndia

Personalised recommendations