Electron mobility Enhancement in Barrier Delta Doped Asymmetric Double Quantum Well Structures

Part of the Environmental Science and Engineering book series (ESE)

Abstract

We analyze the electron mobility in asymmetric double quantum wells by introducing different doping concentrations in the barriers and also by taking different well widths. We show that the asymmetry induced changes in the subband wave functions, energy levels and occupation of subbands lead to enhancement in subband mobility in a multisubband occupied system through the intersubband interactions.

Keywords

Asymmetric quantum wells Multisubband electron mobility 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jae Kyu Choi, Nizami Vagidov, Andrei Sergeev, Stefan Kalchmair, Gottfried Strasser, Fedir Vasko and Vladimir Mitin, Jap. J. Appl. Phys., 51, 074004 (2012).Google Scholar
  2. 2.
    Gabriel Christmann, Alexis Askitopoulos, George Deligeorgis, Zacharias Hatzopoulos, Simeon I. Tsintzos, Pavlos G. Savvidis and Jeremy J. Baumberg, Appl. Phys. Lett., 98, 081111 (2011).CrossRefGoogle Scholar
  3. 3.
    Emine Ozturka and Ismail Sokmenb, Superlattices and Microstructures, 41, 36 (2007).CrossRefGoogle Scholar
  4. 4.
    Sankha S. Mukherjee, Syed S. Islam, Superlattices and Microstructures, 41, 56 (2007).CrossRefGoogle Scholar
  5. 5.
    T.Sahu and K. Alan Shore, J. Appl. Phys., 107, 113708 (2010).Google Scholar
  6. 6.
    Emine Ozturka and Ismail Sokmen, Superlattices and Microstructures,41, 36 (2007).CrossRefGoogle Scholar
  7. 7.
    J.Z.Zhang and D. Alisopp, Phys. Rev. B, 80, 245320 (2009).Google Scholar
  8. 8.
    P. Kinsler, P. Harrison and R. W. Kelsal, J. Appl. Phys., 85, 23 (1999).Google Scholar
  9. 9.
    P.G.Huggard, C.J. Shaw, S.R.Andrew, J.A.Cluff and R. Grey, Phys. Rev. Lett., 84, 1023 (2000).CrossRefGoogle Scholar
  10. 10.
    WCH Choy, EH Li and BL Weiss, IEEE Journal of QE, 34, 1846-1853 (1998).Google Scholar
  11. 11.
    Dong Kwon Kim and D. S. Citrin, Proc. SPIE 6782, Optoelectronic Materials and Devices II, 67820D (2007).Google Scholar
  12. 12.
    P. Moontragoon, N. Vukmirovic, Z. Ikonic and Paul Harrison, IEEE J. Selected Topics in Quantum Electronics, 16, 100 (2010).Google Scholar
  13. 13.
    Fengxue Zhou, Yihong Qi, Hui Sun, Dijun Chen, Jie Yang, Yueping Niu, and Shangqin Gong, Optics Express, 21, 12249 (2013).CrossRefGoogle Scholar
  14. 14.
    T. Sahu and K. Alan Shore, Semicond Sci. Technol., 24, 095021(2009).Google Scholar
  15. 15.
    T. Sahu, S. Palo and A.K. Panda, J. Appl. Phys. 113, 083704(2013).Google Scholar
  16. 16.
    T. Ando, A.B.Fowler, and F. Stern, Rev. Mod. Phys. 54, 437 (1982).CrossRefGoogle Scholar
  17. 17.
    Kaoru Inoue and Tosinobo Matsuno,Physical Review B, 47, 771(1993).CrossRefGoogle Scholar
  18. 18.
    S.K. Lyo, J. Phys.: Condens. Matter., 13, 1259 (2001).Google Scholar
  19. 19.
    A. K. Saxena and A. D. Adams, J. Appl. Phys., 58 (1985).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Science and TechnologyBerhampurIndia

Personalised recommendations