Effect of Ge-composition on the Gain of a Thin Layer Si1-yGey Avalanche Photodiode

  • Kanishka Majumder
  • N. R. Das
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


Gain calculation of Si1-yGe y n+-i-p+ avalanche photodiode (APD) is described for multiplication layer down to tens of nanometers considering dead-space effect. Carrier diffusion from undepleted regions is considered to study the effect of low bias. The computed results are used to investigate the effect of Ge-composition (y) on the gain of a Si1-yGe y APD having thin multiplication layer. Results show that gain increases with bias more rapidly with the increase in Ge-content. It is also seen that thinner multiplication layer is required for APD having lower Ge-content to achieve the same gain at a given bias.


Avalanche photodiode Multiplication layer Impact ionization Dead-space effect Gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Author, K. Majumder thankfully acknowledges the financial support from the Department of Science and Technology (DST) of the Government of India [No. SR/S2/CMP-0110/2010(G)]. Authors would also like to thank the colleagues in their research group in the Institute of Radio Physics & Electronics of the University of Calcutta, India for their help and comments.


  1. 1.
    S. R. Forrest, ch. 4 in Semiconductors and Semimetals, 22, Orlando, FL: Academic (1985).Google Scholar
  2. 2.
    R. G. Smith and S. D. Personick, ch. 4 in Semiconductor Devices for Optical Communication, New York: Springer-Verlag (1980).Google Scholar
  3. 3.
    R. J. McIntyre, IEEE Trans. Electron Devices. ED-13, 164 (1966).CrossRefGoogle Scholar
  4. 4.
    Y. Okuto, and C. R. Crowell, Phys. Rev. B. 10, 4284 (1974).CrossRefGoogle Scholar
  5. 5.
    J. N. Hollenhorst, IEEE J. Lightwave Technol. 8, 531 (1990).Google Scholar
  6. 6.
    M. M. Hayat and B. E. A. Saleh, IEEE J. Lightwave Technol. 10, 1415 (1992).Google Scholar
  7. 7.
    A. R. J. Marshall, J. P. R. David, and C. H. Tan, IEEE Trans. Electron Devices. 57, 2631 (2010).CrossRefGoogle Scholar
  8. 8.
    Y. M. Kang, H. D. Liu, M. Morse, M. J. Paniccia, M. Zadka, S. Litski, G. Sarid, A. Pauchard, Y. H. Kuo, H. W. Chen, W. S. Zaoui, J. E. Bowers, A. Beling, D. C. McIntosh, X. G. Zheng, and J. C. Campbell, Nat. Photonics. 3, 59 (2009).Google Scholar
  9. 9.
    J. S. Youn, M. J. Lee, K. Y. Park, and W. Y. Choi, IEEE J. Quantum Electronics. 48, 229 (2012).Google Scholar
  10. 10.
    U. Dumler, M. Moller, A. Bielik, T. Ellermeyer, H. Langenhagen, W. Walther, and J. Mejri, Electron. Lett, 42, 21 (2006).Google Scholar
  11. 11.
    B. Li, S. Chua and E. A. Fitzgerald, Optical Engineering. 42, 1993 (2003).CrossRefGoogle Scholar
  12. 12.
    C. Li, C. J. Huang, B. Cheng, Y. Zuo, L. Luo, J. Yu, and Q. Wang, J. Appl. Phys. 92, 1718 (2002).Google Scholar
  13. 13.
    K. Majumder, and N. R. Das, Optical Engineering, 52, 054001 (2013).CrossRefGoogle Scholar
  14. 14.
    C. H. Tan, J. C. Clark, J. P. R. David, G. J. Rees, S. A. Plimmer, R. C. Tozer, D. C. Herbert, D. J. Robbins, W. Y. Leong, and J. Newey, Appl. Phys. Lett, 76, 3926 (2000).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Radio Physics and ElectronicsUniversity of CalcuttaKolkataIndia

Personalised recommendations