Influence of Interface Deep Traps on Capacitance of AlGaN/GaN Heterojunctions

  • Jozef Osvald
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


We have studied by modeling and simulation dependence of capacitance of AlGaN/GaN heterostructures by the presence of deep traps localized at the AlGaN and GaN interface. For low frequency capacitance the deep traps cause voltage shift of capacitance curves when the traps concentration is relatively low. With increasing traps concentration the voltage shift increases and above some critical traps concentration the new capacitance peak is observed in the CV curve. We expect that in experimental structures only traps located close to the conduction band minimum can follow external signal.


III-N heterostructures Heterostructure capacitance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Meneghini, A. Stocco, M. Bertin, D. Marcon, A. Chini, G. Menghesso, and E. Zanoni, Appl. Phys. Lett. 100, 033505 (2012).CrossRefGoogle Scholar
  2. 2.
    H. Hasegawa, T. Inagaki, S. Ootomo, and T. Hashizume, J. Vac. Sci. Technol. B 21, 1844 (2003).CrossRefGoogle Scholar
  3. 3.
    A. Y. Polyakov, N. B. Smirnov. A. V. Govorkov, A. V. Markov, A. M. Dabiran, A. M. Wowchak, A. V. Osinsky, B. Cui, P. P. Chow, S. J. Pearton, Appl. Phys. Lett. 91, 232116 (2007).CrossRefGoogle Scholar
  4. 4.
    L. E. Byrum, G. Ariyawansa, R. C. Jayasinghe, N. Dietz, A. G. U. Perera, S. G. Matsik, I. T. Ferguson, A. Bezinger, and H. C. Liu, J. Appl. Phys. 105, 023709 (2009).Google Scholar
  5. 5.
    M. Meneghini, M. Bertin, A. Stocco, G. dal Santo, D. Marcon, P. E. Malinowski, A. Chini, G. Menghesso, and E. Zanoni, Appl. Phys. Lett. 102, 163501 (2013).CrossRefGoogle Scholar
  6. 6.
    N. Sghaier, M. Trabelsi, N. Yacoubi, J. M. Bluet, A. Souifi, G. Guillot, C. Gaquière ; J: C: DeJaeger, Microelecton. J. 37 363 (2006).Google Scholar
  7. 7.
    S. Xie, J. Yin, S. Zhang, B. Liu, W. Zhou,, and Z. Feng, Solid-St. Electron. 53, 1183 (2009).Google Scholar
  8. 8.
    Y. S. Park, M. Lee, K. Jeon, I. T. Yoon, H. Im, C. J. Park, H. Y. Cho, and M.-S. Han, Appl. Phys. Lett. 97, 112110 (2010).CrossRefGoogle Scholar
  9. 9.
    I. Mayergoyz, J. Appl. Phys. 59, 195 (1986).Google Scholar
  10. 10.
    C. E. Korman and I. Mayergoyz, J. Appl. Phys. 68, 1324 (1990).Google Scholar
  11. 11.
    J. Osvald, J. Electron. Mat. 42, 1184 (2013).Google Scholar
  12. 12.
    P. Kordoš, D. Gregušová, R. Stoklas, Š. Gaži, and J. Novák, Solid-St. Electron. 52, 973 (2008).Google Scholar
  13. 13.
    H.-Y. Liu, Ch.-S. Lee, W.-Ch. Hsu, L.-Y. Tseng, B.-Y. Chou, Ch.-S. Ho, and Ch.-L. Wu, IEEE Trans. El. Dev. 60, 2231 (2013).Google Scholar
  14. 14.
    Y. Irokawa, N. Matsuki, M. Sumiya, Y. Sakuma, T. Sekiguchi, T. Chikyo, Y. Sumida, Y. Nakano, Phys. Stat. Sol. C 7, 1928 (2010).Google Scholar
  15. 15.
    E. H. Nicollian, J. R. Brews, MOS (Metal Oxide Semiconductor) Physics and Technology, (John Wiley & Sons, New York, 1982).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Electrical Engineering, Slovak Academy of SciencesBratislavaSlovakia

Personalised recommendations