Synthesis of Cubic Indium Oxide Thin Film by Microwave Irradiation

  • Ruchi Srivastva
  • K. Ibrahim
  • C. S. Yadav
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


The indium metal thin films were deposited at room temperature by dc magnetron sputtering on glass substrate. This indium thin film is post-treated with microwave irradiation at ambient atmosphere to convert it into the In2O3 thin film. Indium oxide (In2O3) thin film was successfully synthesized on glass substrate by using microwave irradiation. This method has advantages over the conventional heating method because it takes lesser treatment time, and the quality of film is better. The effect of microwave irradiation for different time was studied by XRD and UV–VIS spectroscopy. X-ray diffraction result shows the presence of cubic phases in synthesized In2O3 thin film without any significant impurity. Optical spectroscopy measurements show a large optical transparency, greater than 60 %. This In2O3 thin film is highly suitable for the transparent conducting oxide, solar cell and gas sensor applications.


In2O3 thin film Cubic In2O3 Dc magnetron sputtering Microwave irradiation and transparent conducting oxide 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.E. Medvedeva and A.J. Freeman, Europhys. Lett.,69(4), 583(2005).CrossRefGoogle Scholar
  2. 2.
    J. Moon, Y. Shin, K. Kang, S.H. Park and H.Ju, Journal of the Korean Physics society, 47(1), 148(2005).Google Scholar
  3. 3.
    S.Zh. Karazhanov, P.Ravindran, P.Vajeeston, A. Ulyashin, T.G. Finstad and H. Fjellvagl, Physical Review B, 76,075129 (2007).Google Scholar
  4. 4.
    A. Klein, C. Korber, A. Wachau, F. Sauberlich, Y. Gassenbauer, S.T. Harvey, D.E. Priffit and T.O. Mason, Materials, 3, 4892(2010).Google Scholar
  5. 5.
    T. Miyata, T. Hikosaka and T. Minami, Sensors and Actuators B: chemical, 69,16(2000).CrossRefGoogle Scholar
  6. 6.
    T. Minami, S. Takata, T. Kakumu, Journal of vacuum science and technology A: vacuum, surface and films, 14, 1689(1996).Google Scholar
  7. 7.
    C.G. Granqvist, A. Azens, A. Hjelm, L. Kullman, G.A. Niklasson, D. Ronnow and M. S. Mattsson, M.Veszelei and G. Vaivars, Solar energy, 63, 199(1998).CrossRefGoogle Scholar
  8. 8.
    H. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur and H. Morkoc, Superlattices and microstructures, 48, 458(2010).CrossRefGoogle Scholar
  9. 9.
    I. Hotovy, T. Kups, J. hotovy, J.Liday,D. Buc, M. Caplovicova, V. Rehacek, H. Sitter, C. Simbrunner, A. Bonnani and L. Spiess, Journal of Electrical Engineering, 61(6), 382(2010).Google Scholar
  10. 10.
    J. Xu, Y. Chen and J. Shen, Mater. letters, 62, 1368 (2008).Google Scholar
  11. 11.
    A.Klein, C. Korber, AndreWachau, F.Sauberlich, Y. Gassenbauer, S.P. Harvey, D.E.Proffit and T.O. Mason, Materials., 3, 4892 (2010).CrossRefGoogle Scholar
  12. 12.
    L.C.Chen,C.H. Tien and W.C. Liao,Journal of Physics D: Applied Physics, 44(16), 165101 (2011).CrossRefGoogle Scholar
  13. 13.
    A. Gurlo, M. Ivanovskaya, A.Pfau, U. Weimar and W. Gopel, Thin film solids,307,288(1997).Google Scholar
  14. 14.
    S.T. Tan, B.J. Chen, X.W.Sun, X.Hu, X.H. Zhang and S.J. Chua, Journal of crystal growth (to be published).Google Scholar
  15. 15.
    J. Tauc, Amorphous and Liquid Semiconductor (Plenum, Landon, 1974).Google Scholar
  16. 16.
    E.A. David and N.F. Mott, Philos. Mag. 22, 903(1970).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Nano- Optoelectronics Research and Technology Laboratory, School of PhysicsUniversiti Sains MalaysiaPenangMalaysia
  2. 2.School of Basic SciencesIndian Institute of TechnologyMandiIndia

Personalised recommendations