Skip to main content

A Multi-Scale Approach to Wavefunction Engineering of Subdimensional Quantum Semiconductor Structures

  • Conference paper
  • 245 Accesses

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

With on going reduction in dimension of nano-devices it becomes imperative to include interface and structure boundaries accounting for complex, mixed boundary conditions. A Lagrangian approach to the physics provides the natural framework for such calculations, with computational work based on the finite element method. This variational approach has led to the design of mid-IR cascade lasers and the solution of the Schrödinger-Poisson self-consistency in arbitrary layered structures. Applications of this methodology lead to the solution for energy levels in a magnetic field in the Voigt geometry. The effect of surface proximity on binding energy for impurity states in nanowires and the beautiful physics of complex topological surfaces such as a Mobius ring are displayed as further examples of the issues addressable through multi-scale parallel computing within this variational framework.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. O. Kane, J. Phys. Chem. Solids 6, 236 (1958); Semiconductors and Semimetals Vol 1, edited by R K Willardson and A C Beer (New York; Academic, 1966); Handbook on Semiconductors Vol 1, edited by W Paul (Amsterdam; North-Holland) p 193 (1982); J. M. Luttinger and W. Kohn Phys. Rev. 97 869 (1955).

    Google Scholar 

  2. B. A. Foreman Phys. Rev. B 48 4964(1993); M. G. Burt, Semicond. Sci. Technol. 2, 460 (1987); Erratum 2, 701 (1987); J. Phys. Condens. Matter 4, 6651 (1992).

    Article  Google Scholar 

  3. L. R. Ram-Mohan, A. M. Girgis, J. D. Albrecht, and C. W. Litton, Superlattices and Microstructures 39, 455–477 (2006). L. R. Ram-Mohan and K.-H. Yoo, J, Phys. Condens. Matter 18, R901-R917 (2006).

    Article  Google Scholar 

  4. P. O. Lowdin, J. Chem. Phys. 19 1396 (1951).

    Google Scholar 

  5. M. Gell-Mann and M. Levy Il Nuovo Cimento 16 53 (1960).

    Article  Google Scholar 

  6. L. R. Ram-Mohan, Finite Element and Boundary Element Applications to Quantum Mechanics (Oxford; Oxford UP, 2002).

    Google Scholar 

  7. L R Ram-Mohan and J R Meyer J. Nonlin. Opt. Phys. Mater. 4 191 (1995); L R, Ram-Mohan, D. Dossa. I. Vurgaftman and J. R. Meyer Handbook of Nanostructured Materials and Nanotechnology vol 2, ed. H S Nalwa (New York; Academic Press, 1999) chap 15.

    Google Scholar 

  8. L. R. Ram-Mohan, J. Moussa and K. H. Yoo, J. Appl. Phys. 95, 3081 (2004).

    Google Scholar 

  9. S. T. Jang, K. H. Yoo and L. R. Ram-Mohan, Proceedings of the 13th Int. Symp. Physics of Semiconductors and Applications, Korea; Journal of the Korean Phys.l Soc. 50, 834–838 (2007).

    Google Scholar 

  10. I. Vurgaftman, J. R. Meyer and L. R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

    Google Scholar 

  11. L. R. Ram-Mohan and K. H. Yoo, Physical Review B 82, 1–8 (2010).

    Google Scholar 

  12. J. Yoon, I. Shalish, A. M. Girgis, L. R. Ram-Mohan, and V. Narayanamurti, Appl. Phys. Lett. 94, 142102 (1–3) (2009).

    Article  Google Scholar 

  13. Zehao Li and L. R. Ram-Mohan, Phys. Rev.B 85, 195438–1-9 (2012).

    Google Scholar 

  14. P. G. Kassebaum, C. Boucher and L. R. Ram-Mohan, J. Comput. Phys. 231 5747-5760 (2012).

    Google Scholar 

  15. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton, New Jersey, 2008). (Fig. 6(a) is a superposition of our results with those of Joannopoulos, et al. Their figure was reproduced with permission from Princeton U.P.).

    Google Scholar 

Download references

Acknowledgments

This report was written while on sabbatical leave at the Naval Research Laboratory, and I thank Dr. Fritz Kub for his hospitality. I wish to thank J. Albrecht, Z. Li, and K. H. Yoo for discussions. I also thank Quantum Semiconductor Algorithms, Inc., for the use of their finite element and sparse matrix analysis software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. R. Ram-Mohan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ram-Mohan, L.R. (2014). A Multi-Scale Approach to Wavefunction Engineering of Subdimensional Quantum Semiconductor Structures. In: Jain, V., Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-03002-9_215

Download citation

Publish with us

Policies and ethics