Skip to main content

Chalcogenide Micro/Nanostructures by Evaporation Condensation Method

  • Conference paper
Physics of Semiconductor Devices

Part of the book series: Environmental Science and Engineering ((ENVENG))

  • 130 Accesses

Abstract

Chalcogenide (As-S-Se) micro/nanostructures have been successfully synthesized using thermal evaporation-condensation method in evacuated glass ampoule. The nanowires have diameter ranging from 10 to 20 nm and they are few microns in length. The structures are characterized using Scanning Electron Microscope (SEM), Energy Dispersive Spectroscopy (EDS) and X Ray Diffraction (XRD) for their morphology, composition and structure respectively. These nanowires show promising applications in the field of nanoelectronics and nanophotonics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.F. Daniel, A.J. Leadbetter, A.C. Wright and R. N. Sinclair, J. Non-Cryst. Sol., 32, 271 (1979).

    Google Scholar 

  2. M.V. Baidakova, N.N. Faleev, T.F. Majets and E.A. Smorgonskaya, J. Non-Cryst. Sol., 192&193, 149 (1995).

    Google Scholar 

  3. J. Hu, T.W. Odom and C. M. Lieber, Acc. Chem. Res., 32, 435 (1999).

    Article  Google Scholar 

  4. J. Rouxel (Ed.), Crystal Chemistry and Properties of Materials with Quasi-one-dimensional Structures, D. Riedel, Boston, (1986).

    Google Scholar 

  5. J.A. Wilson, F.J. DiSalvo and S. Mahajan, Adv. Phys. 24, 117 (1975).

    Google Scholar 

  6. G. Seifert, T. Kohler and R. Tenne, J. Phys. Chem. B, 106, 2497 (2002).

    Article  Google Scholar 

  7. Y. Li, Y. Ding, H. Liao and Y. Qian, J. Phys. Chem. Solids, 60, 965 (1999).

    Google Scholar 

  8. M.A. Malik, N. Revaprasadu and P. O’Brien, Chem. Mater., 13, 913 (2001).

    Article  Google Scholar 

  9. Q. Li, Y. Ding, M. Shao, J. Wu, G. Yu and Y. Qian, Mater. Res. Bull, 38, 539 (2003).

    Google Scholar 

  10. A. Kikineshi, A. Mishak, V. Palyok and M. Shiplyak, Nanostruct. Mater., 12, 417 (1999).

    Google Scholar 

  11. D. Nasheva, H. Hofmeister, Z. Levi and Z. Aneva, Vacuum, 65, 109 (2002).

    Article  Google Scholar 

  12. M. Brust, N. Stuhr-Hansen, K. Norgaard, J. B. Christensen, L.K. Nielsen and T. Bjornholm. Nano Lett., 1, 189 (2001).

    Article  Google Scholar 

  13. A.V. Kolobov, H. Oyanagi, A. Roy and K. Tanaka, J. Non-Cryst. Sol., 232-234, 80(1998).

    Google Scholar 

  14. R.S. Wagner and W.C. Elis, Appl. Phys. Lett., 4, 89 (1964).

    Article  Google Scholar 

  15. E.I. Givargizov, J. Cryst. Growth, 32, 20 (1975).

    Google Scholar 

  16. G. D. Saundres and Y.C. Chaing, Phys. Rev. B., 45, 9202 (1992).

    Article  Google Scholar 

  17. C. R. Martin, Science, 266, 1961 (1994).

    Google Scholar 

  18. A.P. Alivisatos, Science, 271, 933 (1996).

    Article  Google Scholar 

  19. T. J. Trentler, K.M. Hickman, S.C. Goel, A. M. Viano, P. C. Gibbons and W.E. Buhro, Science, 270, 1791 (1995).

    Article  Google Scholar 

  20. B. R. Johnson, M. J. Schweiger and S. K. Sundaram, J. Non-Cryst. Sol., 351,1410 (2005).

    Google Scholar 

  21. K. El-Bayoumy, Mutation Res., 475, 123 (2001).

    Google Scholar 

  22. W.B. Campbell, Whisker Technology, Wiley, New York, (1990).

    Google Scholar 

  23. Y.P. Zhao, J.T. Drotar, G.C. Wang and T.M. Lu, Phys. Rev. Lett., 87, 136102 (2001).

    Google Scholar 

  24. G.S. Bales, A.C. Redfield and A. Zangwill, Phys. Rev. Lett., 62, 776 (1989).

    Article  Google Scholar 

  25. C. Hwang, H. Yang, J. Hsieh and Y. Dai, Thin Solid Films, 304, 371 (1997).

    Article  Google Scholar 

Download references

Acknowledgments

Swati Raman and Ravi K. Kumar thanks CSIR for providing financial support in the form of Research Associateship and Senior Research Fellowship respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Husain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Raman, S., Kumar, R.K., Husain, M. (2014). Chalcogenide Micro/Nanostructures by Evaporation Condensation Method. In: Jain, V., Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-03002-9_194

Download citation

Publish with us

Policies and ethics