Thermal Evolution of Mixed Oxides of Zirconia-Silica Prepared by Sol-gel Route

Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

The thermal evolution of nanodimensional mixed metal oxides prepared by sol-gel route through structural characterization is reported. ZrO2-SiO2 sol-gel powders were produced using zirconium propoxide and tetraethoxysilane (TEOS) as precursors. The gel was dried at 110 °C for 6 h in air. After drying, thermal treatment of as prepared samples was carried out at 650, 875 and 1,100 °C for 4 h. The crystallization of samples and the crystalline phases evolved are related to annealing temperature. The phases of zirconia and silica are identified, and the lattice parameters are calculated using X-ray diffraction. The results suggest that annealing at higher temperature enhances the crystallinity and hence crystallite size of nanodimensional samples.

Keywords

Thermal evolution ZrO2-SiO2 Sol-gel XRD FTIR 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors gratefully acknowledge University Grants Commission, New Delhi for financial assistance in the form of Major Research Project.

References

  1. 1.
    C. J. Brinker and G. W. Scherer, Sol-gel science, the physics and chemistry of sol-gel processing (Academic Press, San Diego, 1990).CrossRefGoogle Scholar
  2. 2.
    M. Kakihana, J. Sol-Gel Sci. Technol., 6, 7, (1996).Google Scholar
  3. 3.
    M. Curran, T. E. Gedris and A. E. Stiegman, Chem. Mater., 10, 1604, (1998).CrossRefGoogle Scholar
  4. 4.
    K. Yanagisawa, Y. Yamamoto, Q. Feng and N. Yamasaki, J. Mater. Res., 13, 825, (1998).CrossRefGoogle Scholar
  5. 5.
    Z. Zhan and H. C. Zeng, J. Non-Cryst. Solids, 243, 26, (1999).Google Scholar
  6. 6.
    Q. Z. Yan, X. T. Su, Z. Y. Huang and C. C. Ge, J. Eur. Ceram. Soc., 26, 915, (2006).Google Scholar
  7. 7.
    E. Lotero, D. Vu, C. Nguyen, J. Wagner and G. Larsen, Chem. Mater., 10, 3756, (1998).CrossRefGoogle Scholar
  8. 8.
    F. Gonella, G. Matter, P. Mazzoldi, Chem. Mater., 11, 814, (1991).Google Scholar
  9. 9.
    R. Gomez, F. Tzompantzi, T. Lopez, O. Navaro, React. Kinet. Catal. Lett., 53 (2), 245, (1994).Google Scholar
  10. 10.
    S. Damyanova, L. Petrov, M.A. Centeno, P. Grange, Appl. Catal. A: Gen., 224, 271, (2002).Google Scholar
  11. 11.
    K. Kamiya, S. Sakka, Tatemichi, J. Mater. Sci., 15, 1765, (1980).Google Scholar
  12. 12.
    S. Lange, I. Sildos, M. Hartmanova, V. Kisik, E. E. Lomonova, M. Kirm, J. Phys.: Conf. Series, 249, 012007, (2010).Google Scholar
  13. 13.
    X. Bokhimi, A. Morales, O. Novaro, M. Portilla, T. López, F. Tzompantzi and R. Gómez, J. Solid State Chem., 135, 28, (1998).Google Scholar
  14. 14.
    B. Jongsomjit, S. Kittiruangrayub, P. Praserthdam, Mat. Chem. Phys., 105, 14, (2007).Google Scholar
  15. 15.
    D. H. Aguilar, L. C. Torres-Gonzalez, L. M. Torres-Gonzalez, J. Solid State Chem., 158, 349, (2000).Google Scholar
  16. 16.
    H. Ding, A. V. Virkar, F. Liu, Solid State Ionics, 215, 16, (2012).CrossRefGoogle Scholar
  17. 17.
    Z. A. Omran, Commun. Fac. Scit. Univ. Ank. Series C, 40, 31, (1994).Google Scholar
  18. 18.
    S. Araki, Y. Kiyohara, S. Imasaka, S. Tanaka, Y. Miyake, Desalination, 266, 46 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Coates: in Encyclopedia of Analytical Chemistry, R.A. Meyers (Ed.), (Wiley, Chichester, 2000)Google Scholar
  20. 20.
    N. Agoudjil, N. Benmouhoub, L. Labot, Desalination, 184, 65, (2005).CrossRefGoogle Scholar
  21. 21.
    Y. Ma, P. Jia, X. Li, N. Liu, Y. Ma, J. Porous Mater, 19, 1047, (2012).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Materials Science Laboratory, Department of PhysicsChaudhary Devi Lal UniversitySirsaIndia

Personalised recommendations