Temperature Dependence Thermal Conductivity of ZnS/PMMA Nanocomposite

Part of the Environmental Science and Engineering book series (ESE)

Abstract

ZnS/PMMA nanocomposite with 4 weight percent of ZnS nanoparticles were prepared by solution casting method. The obtained ZnS/PMMA nanocomposites were characterized through XRD and TEM measurements. Transient plane source (TPS) technique was used to determine the thermal conductivity of ZnS/PMMA nanocomposite over the temperature range from 30oC to 120 °C. The results indicated that the thermal conductivity shows increasing behavior up to glass transition temperature beyond which, it becomes constant due to the straightening of chains and vacant site scattering of phonons, respectively. It is also observed that thermal conductivity of ZnS/PMMA nanocomposite increases as compared to pure polymer. This behavior of thermal conductivity of nanocomposite is explained on the basis of their structure.

Keywords

Poly (methyl methacrylate) Polymer nanocomposites Thermal conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

Authors are thankful to Council of Scientific and Industrial Research (CSIR), New Delhi for providing financial assistance through an Emeritus Scientist scheme to Prof. N.S. Saxena during the course of this work. One of the authors (Sonalika Agarwal) would also be thankful to Director (Dr. Narendra Kumar), KIET and to HOD (Dr. C.M. Batra) for their help in various ways.

References

  1. 1.
    D. H. Lee, J.H. Lee, M.S. Cho, S. H. Choi, Y. M. Lee J. D. Nam, J. Polym. Sci. Polym. Phys., 43 59 (2005).Google Scholar
  2. 2.
    M.S. Cho, B. Shin, N.J.Do, Y. Lee, K. Song, Polym. Int., 53 1523 (2004).CrossRefGoogle Scholar
  3. 3.
    H. Fokushima, L.T. Drazal, B. P. Rook, M.J. Rich, J. Therm. Anal. Calorim., 85 235 (2006).Google Scholar
  4. 4.
    C.P. Wong, R.S. Bollampally, J. Appl. Polym. Sci. 74 3396 (1999).CrossRefGoogle Scholar
  5. 5.
    R. Zhao, C. Z. Chen, Q. F. Li, W.B. Luo, J. Cent. South Univ. Technol,. 15 582 (2008).CrossRefGoogle Scholar
  6. 6.
    D.J. Godovsky, Adv. Polym. Sci., 159 163 (2000).Google Scholar
  7. 7.
    M. Q. Zhang, M. Z. Rong, Y. X. Zheng, H. M. Zeng, R. Walter, K. Friedrich, Polymer, 42 167 (2001).CrossRefGoogle Scholar
  8. 8.
    Li. Wang, Y. S. Liu, X. Jiang, D. H. Qin, Y. Cao, J. Phys. Chem. C, 111 9538 (2007) .CrossRefGoogle Scholar
  9. 9.
    L. Guo, S. Chen, Li. Chen, Colloid. Polym. Sci., 285 1593 (2007).Google Scholar
  10. 10.
    H. Althues, R. Palkovits, A. Rumplecker, P. Simon, W. Sigle, M. Bredol, U. Kynast, S. Kaskel, Chem. Mater., 18 1068 (2006).CrossRefGoogle Scholar
  11. 11.
    S. Agrawal, D. Patidar, D, N.S. Saxena, Phase. Transit., 84,888(2011).Google Scholar
  12. 12.
    S. Agrawal, D. Patidar, D, N.S. Saxena, Heat and Mass Transfer, 49, 947 (2013).CrossRefGoogle Scholar
  13. 13.
    A. Guinier, X-ray Diffraction, San Francisco, CA, (1963).Google Scholar
  14. 14.
    K. P. Menard, Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton, 1999.Google Scholar
  15. 15.
    Y.K. Godovsky: Thermophysical Properties of Polymers, Springer, New York, 1992.CrossRefGoogle Scholar
  16. 16.
    P.G. Klemens, R. P. Tye, Thermal Conductivity, Academic Press, London & New York, Chap. 1, 1958.Google Scholar
  17. 17.
    J. M. Ziman: Electrons and Phonons, Clarendon Press, London,Chap. l-6, 1963.Google Scholar
  18. 18.
    N. S. Saxena, P. Pradeep, G. Mathew, S. Thomas, M. Gustafsson, S. E. Gustafsson: Euro. Polym. J. 35, 1687 (1999).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Semi-conductor and Polymer Science Laboratory, Department of PhysicsUniversity of RajasthanJaipurIndia
  2. 2.Department of Applied SciencesKrishna Institute of Engineering and TechnologyGhaziabadIndia

Personalised recommendations