Advertisement

Porous Anodic Alumina Template Formation: Deposition Technique Dependence

  • S. Upreti
  • K. Mukherjee
  • M. Palit
  • A. Bag
  • S. Mallik
  • S. Chattopadhyay
  • C. K. Maiti
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Porous anodic alumina (PAA) oxide layers have been deposited on TiN/SiO2/Si by both the vacuum evaporation (VE) and RF magnetron sputtering (MS) techniques. The deposition technique dependence of the pore size at the surfaces of the anodic aluminum oxide (AAO) membranes has been investigated after two step anodization process. The nanochannel arrays of AAO membranes were characterized with scanning electron microscopy (SEM), atomic force microscopy (AFM) and Fourier transform infrared attenuated total reflectance (FTIR-ATR) analysis. Chemical composition and film structural properties were investigated by x-ray photoelectron spectroscopy (XPS) and high resolution x-ray diffraction (HR-XRD) analyses. It is shown that uniform pore density in AAO templates is obtained using Al films deposited using RF sputtering technique.

Keywords

AAO PAA RF magnetron sputter Vacuum evaporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Ramakrishna, M. Ramalingam, T. S. S. Kumar, and W. O. Soboyejo, Biomaterials: A Nano Approach, (CRC Press/Taylor & Francis, FL, USA, 2010).Google Scholar
  2. 2.
    R. S. Greco, F. B. Prinz, R. L. Smith, Nanoscale Technology in Biological Systems, (CRC Press, FL, USA, 2005).Google Scholar
  3. 3.
    M. G. Lines, J. Alloys Compd., 449, 242 (2008). [doi: 10.1016/j.jallcom.2006.02.082]CrossRefGoogle Scholar
  4. 4.
    G. E. Thompson, Surface characteristics of aluminium and aluminium alloys, (TALAT Lecture 5101, European Al Ass, 2004). [http://core.materials.ac.uk/repository/eaa/talat/5101.pdf]
  5. 5.
    M. Saito, M. Kirihara, T. Taniguchi, and M. Miyagi, Appl. Phys. Lett., 55, 607 (1989). [doi: 10.1063/1.101572]CrossRefGoogle Scholar
  6. 6.
    F. Favier, E. C. Walter, M. P. Zach, T. Benter, and R. M. Penner, Science, 293, 2227 (2001). [doi:  10.1126/science.1063189]CrossRefGoogle Scholar
  7. 7.
    S. Manalis, K. Babcock, J. Massie, V. Elings, and M. Dugas, Appl. Phys. Lett., 66, 2585 (1995). [doi: 10.1063/1.113509]CrossRefGoogle Scholar
  8. 8.
    D. H. Cobden, Nature, 409, 32 (2001). [doi: 10.1038/35051205]CrossRefGoogle Scholar
  9. 9.
    S.-Z. Chu, K. Wada, S. Inoue, S.-I. Todoroki, Y. K. Takahashi, and K. Hono, Chem. Mater., 14, 4595 (2002). [doi: 10.1021/cm020272w]CrossRefGoogle Scholar
  10. 10.
    S. Phok, S. Rajaputra, and V. P. Singh, Nanotechnol., 18, 475601 (2007). [doi: 10.1088/0957-4484/18/47/475601]CrossRefGoogle Scholar
  11. 11.
    L. Velleman, G. Traini, P. J. Evans, A. Atanacio, J. G. Shapter, and D. Losic, in Proc. SPIE 7267, Smart Materials V, 72670S (2008). [doi: 10.1117/12.810716]
  12. 12.
    C.-L. Xu, H. Li, G.-Yu Zhao, and H.-L. Li, Appl. Surf. Sci., 253, 1399, (2006). [doi: 10.1016/j.apsusc.2006.02.056]CrossRefGoogle Scholar
  13. 13.
    H. Zhang, X. Ma, J. Xu, J. Niu, J. Sha, and D. Yang, J. Cryst. Growth, 246, 108 (2002). [doi: 10.1016/S0022-0248(02)01900-0]CrossRefGoogle Scholar
  14. 14.
    J. Elam, J. A. Libera, P. C. Stair, and M. J. Pellin, ECS Trans., 11, 177 (2007). [doi: 10.1149/1.2779082]
  15. 15.
    H. Masuda, K. Fukuda, Science, 268, 1466 (1995). [doi: 10.1126/science.268.5216.1466]CrossRefGoogle Scholar
  16. 16.
    Y. S. Shin, J. H Yang, C.-Y. Park, M. H. Kwon, J.-B. Yoo, and C. W. Yang, Jpn. J. Appl. Phys., 45, 1869 (2006). [doi: 10.1143/JJAP.45.1869]CrossRefGoogle Scholar
  17. 17.
    L. Mengke, W. Chengwei, L. Hulin, Chin. Sci. Bull., 46, 1793 (2001). [doi: 10.1007/BF02900552]CrossRefGoogle Scholar
  18. 18.
    J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, and X. M. Meng, Appl. Phys. Lett., 85, 2361 (2004). [doi: 10.1063/1.1791326]CrossRefGoogle Scholar
  19. 19.
    S. Shingubara, J. Nanopart. Res., 5, 17 (2003). [doi: 10.1023/A:1024479827507]CrossRefGoogle Scholar
  20. 20.
    H. Chik, and J. M. Xu, Mat. Sci. Eng R, 43, 103 (2004). [doi: 10.1016/j.mser.2003.12.001]CrossRefGoogle Scholar
  21. 21.
    G. E. J. Poinern, N. Ali, and D. Fawcett, Materials, 4, 487 (2011). [doi: 10.3390/ma4030487]CrossRefGoogle Scholar
  22. 22.
    G. E. Thompson, Y. Xu, P. Skeldon, K. Shimizu, S. H. Han, and G. C. Wood, Philos. Mag. B, 55, 651 (1987). [doi: 10.1080/13642818708218371]CrossRefGoogle Scholar
  23. 23.
    S. J. Garcia-Vergara, L. Iglesias-Rubianes, C. E. Blanco-Pinzon, P. Skeldon, G. E. Thompson, and P. Campestrini, Proc. R. Soc. A, 462, 2345 (2006). [doi: 10.1098/rspa.2006.1686]CrossRefGoogle Scholar
  24. 24.
    T. P. Hoar, and J. Yahalom, J. Electrochem. Soc., 110, 614 (1963). [doi: 10.1149/1.2425839]CrossRefGoogle Scholar
  25. 25.
    N.-Q. Zhao, X.-X. Jiang, C.-S. Shi, J.-J. Li, Z.-G. Zhao, and X.-W. Du, J Mater Sci, 42, 3878 (2007). [doi: 10.1007/s10853-006-0410-3]CrossRefGoogle Scholar
  26. 26.
    K. Nielsch, J. Choi, K. Schwirn, R. B. Wehrspohn, and U. Gösele, Nano Lett., 2, 677 (2002). [doi: 10.1021/nl025537k]CrossRefGoogle Scholar
  27. 27.
    H.-S. Seo, S.-W. Jee, and J.-H. Lee, J. Korean Phys. Soc., 51, L1863 (2007). [doi: 10.3938/jkps.51.1863]CrossRefGoogle Scholar
  28. 28.
    H. Garbacz, P. Wieciński, B. Adamczyk-Cieślak, J. Mizera, and K.J. Kurzydłowski, J. Microsc., 237, 475 (2010). [doi: 10.1111/j.1365-2818.2009.03297.x]CrossRefGoogle Scholar
  29. 29.
    P. Liu, V. P. Singh, and S. Rajaputra, Nanotechnology, 21, 115303 (2010). [doi: 10.1088/0957-4484/21/11/115303]CrossRefGoogle Scholar
  30. 30.
    S. K. Panda, D. Han, H. Yoo, H. Shin, H. Park, and J. Xu, Electrochem. Solid-State Lett., 14, E21 (2011). [doi: 10.1149/1.3569112]CrossRefGoogle Scholar
  31. 31.
    S. D. Ebbesen, B. L. Mojet, and L. Lefferts, Langmuir, 24, 869 (2008). [doi: 10.1021/la7027725]CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • S. Upreti
    • 1
  • K. Mukherjee
    • 1
  • M. Palit
    • 2
  • A. Bag
    • 1
  • S. Mallik
    • 1
  • S. Chattopadhyay
    • 2
    • 3
  • C. K. Maiti
    • 1
  1. 1.VLSI Engineering Laboratory, Department of Electronics and ECEIndian Institute of TechnologyKharagpurIndia
  2. 2.Centre for Research in NanoScience and NanotechnologyUniversity of CalcuttaKolkataIndia
  3. 3.Department of Electronic ScienceUniversity of CalcuttaKolkataIndia

Personalised recommendations