Toxicity Study of TiO2, ZnO and CNT Nanomaterials

  • Rupesh Kumar Basniwal
  • Vasuda Bhatia
  • Nitin Bhardwaj
  • V. K. Jain
Part of the Environmental Science and Engineering book series (ESE)


Nanotechnology based industry is expected to turn into a one trillion dollar industry as their applications are emerged in various fields like consumer products, medicine, and the environment. Rapid development of Nanosciences, therefore, resulted in significant synthesis of various inorganic and organic Nanomaterials followed by their characterization which are highly applicable globally. However, potential negative effects of this burgeoning industry were not well studied, especially toxicity of nanoparticle on aquatic environments. Present study reports the cytotoxicity of Carbon Nanotubes, ZnO nanoparticle and TiO2 nanoparticle to Chlorella sp. algae. Nanoparticles suspensions were prepared in various concentrations from 0.03 to 0.12 g/l using algal test medium and further quantified by UV/Vis spectroscopy. Algal cultures were maintained in 3–4 K Lux cool white fluorescent light on 16 h/8 h alternate light and dark cycles at 28 ± 2 °C temperature. A growth study of algae was done by measuring the transmittances of algal cultures on 680 nm wavelength at different time interval. It has been observed that with the increase of the concentrations nanoparticles, the growth of algae decreases simultaneously. It shows 90 % growth in presence of CNT’s, 86 % growth in presence of TiO2 and 38 % growth in presence of ZnO nanoparticles as compare to control i.e. 100 %. Reduce growth of Chlorella cells in presence of CNT, TiO2 and ZnO nanoparticles indicates clearly cytotoxicity of these nanoparticles. In our study we found ZnO 62 % toxic, TiO2 14 % toxic and CNT 10 % toxic against Chlorella sp.


Nanotechnology Eco-toxicity Algae Chlorella Carbon nanotubes Nanoparticles Spectrophotometer 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are thankful to Dr. Ashok Chauhan, Amity University, Noida, U.P. (India) for his encouragements and kind support.


  1. 1.
    F. Gao, F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu and P.Yang, Biol. Trace. Elem. Res. 111, 239-253 (2006)Google Scholar
  2. 2.
    L. Zhang, Y. Jiang, Y. Ding, N. Daskalakis, L. Jeuken, M. Povey, A. J. O’Neill and D.W. York, J. Nanopart. Res. 12,1625-1636 (2010)Google Scholar
  3. 3.
    J.E. Canas, M. Long, S. Nations, R. Vadan, L. Dai, M. Luo, R. Ambikapathi, E.H. Lee and D. Olszyk, Environ. Toxicol. Chem. 27, 1922–1931(2008)Google Scholar
  4. 4.
    A. Bianco, K. Kostarelos, C.D Partidos and M. Prato, Chem. Commun. (Camb), 571-577 (2005)Google Scholar
  5. 5.
    A. R Petosa, D. P Jaisi, I. R. Quevedo, M. Elimelech and N. Tufenkji, Environ. Sci. Technol. 44, 6532 − 6549 (2010)CrossRefGoogle Scholar
  6. 6.
    R. Singh, R. Saxena, R. K. Basniwal and V.K. Jain, J. Bionanosciences 4, 1-6 (2010)Google Scholar
  7. 7.
    M. Farré, G. S. Krisztina, L. Kantiani and D. Barceló, Anal. Bioanal. Chem. 393, 81–95 (2009)Google Scholar
  8. 8.
    R. D. Handy, R. Owen and E.V. Jones, Ecotoxicology 17(5), 315-25 (2008)CrossRefGoogle Scholar
  9. 9.
    M.N. Moore. Environ. Int. 32, 967-976 (2006)Google Scholar
  10. 10.
    E. Navarro, A. Baun, R. Behra, N. B Hartmann, J. Filser, A. J. Miao, A. Quigg, P. H. Santschi and L. Sigg, Ecotoxicology 17 (5), 372 − 386 (2008)CrossRefGoogle Scholar
  11. 11.
    B. Nowack and T.D. Bucheli, Environ. Pollut. 150, 5-22 (2007)Google Scholar
  12. 12.
    A. Baun, S. N Sorensen, R. F. Rasmussen, N. B.Hartmann and C. B. Koch, Aquat. Toxicol. 86, 379–387 (2008)Google Scholar
  13. 13.
    A. P. Roberts, A. S. Mount, B. Seda,, J. Souther, R. Qiao, S. Lin, P. C Ke, A. M. Rao and S. J. Klaine, Environ. Sci. Technol. 41(8), 3025-3029 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Lin., Small 5, 1128–1132 (2009)Google Scholar
  15. 15.
    H. Zhu, J. Han, J. Q. Xiao and Y. Jin, J. Environ. Monitor. 10, 713-717 (2008).Google Scholar
  16. 16.
    M. Khodakovskaya, E. Dervishi, M. Mahmood, Y. Xu, Z. Li, F. Watanabe and A.S. Biris, ACS Nano 3, 3221–3227 (2009)CrossRefGoogle Scholar
  17. 17.
    M. Davoren, Toxicol. in vitro 21, 438-448 (2007)Google Scholar
  18. 18.
    C.W. Lam, J. T. James, R. McCluskey and R. L. Hunter, Toxicol. Sci. 77, 126-134 (2004)Google Scholar
  19. 19.
    C.W. Lam, J.T. James, R. McCluskey, S. Arepalli and R.L Hunter, Crit Rev. Toxicol. 36(3), 189-217 (2006)Google Scholar
  20. 20.
    N. A. Monteiro Riviere, R. J. Nemanich, A. O. Inman, Y. Wang and J. E. Riviere, Toxicol. Lett. 155(3), 377-384 (2005)Google Scholar
  21. 21.
    J. Muller, F. Huaux, N. Moreau, P. Misson, J. F Heilier, M. Delos, M. Arras, A. Fonseca, J. B Nagy and D. Lison, Toxicol. Appl. Pharm. 207(3), 221-231 (2005)Google Scholar
  22. 22.
    Y. Zhu, T. Ran, Y. Li, J. Guo and W. Li, Nanotechnology 17, 4668-4674 (2006)CrossRefGoogle Scholar
  23. 23.
    G. Jia, Environ. Sci. Technol. 39, 1378-1383 (2005)CrossRefGoogle Scholar
  24. 24.
    K. D. Grieger, I. Linkov, S. Foss Hansen and A. Baun, Nanotoxico. 6, 196-212 (2012)Google Scholar
  25. 25.
    C. O. Robichaud, D.Tanzil, U. Weilenmann and M. R. Wiesner, Environ. Sci. Technol. 39 (22), 8985 − 8994 (2005)CrossRefGoogle Scholar
  26. 26.
    S. Iijima, Nature 354, 56-58 (1991)CrossRefGoogle Scholar
  27. 27.
    M. F. Yu, Science. 287, 637-640 (2000)CrossRefGoogle Scholar
  28. 28.
    L. Wei, M. Thakkar, Y. Chen, S. A. Ntim and S. Mitra, Aquat. Toxicol. 100, 194-201 (2010)Google Scholar
  29. 29.
    S. Youn, R. Wang, J. Gao, A. Hovespyan, K. Ziegler, J.C. J Bonzongo and G. Bitton, Nanotoxicology 6(2), 161-172 (2012)Google Scholar
  30. 30.
    A. A. Miranda, S. M. Shaikh, P.R. Sarode & P. V Desai, Indian Journal of Geo-Marine Sciences, 41(4), 331-337 (2012)Google Scholar
  31. 31.
    F. Schwab, Environ. Sci. Technol. 45, 6136–6144 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Singh, K.N. Bhushan and U.C. Banerjee, Critical Review Biotechnology 25(3), 73–95 (2005)Google Scholar
  33. 33.
    J. John and Milledge, Environ Sci. Biotechnol. 10, 31–41 (2011)Google Scholar
  34. 34.
    A. Belay, JANA. 5(2), 27-48 (2002)Google Scholar
  35. 35.
    S.A. Halperin, B. Smith, C. Nolan, J. Shay and J. Kralovec, CMAJ.169, 111-177 (2003)Google Scholar
  36. 36.
    R.Y. Stanier, R. Kunisawa, M. Mandel and G. Cohen-Bazire, American Soc. for Micro. 35, 171-205 (1971)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Rupesh Kumar Basniwal
    • 1
  • Vasuda Bhatia
    • 1
  • Nitin Bhardwaj
    • 1
  • V. K. Jain
    • 1
  1. 1.Amity Institute of Advanced Research and Studies (Materials and Devices)Amity UniversityNoidaIndia

Personalised recommendations