Electrical Characteristics of Si/ZnO Core–Shell Nanowire Heterojunction Diode

  • Purnima Hazra
  • S. Jit
Part of the Environmental Science and Engineering book series (ESE)


In this paper, we have presented the electrical characteristics of the silicon nanowire (SiNW)/Zinc oxide (ZnO) core–shell heterojunction diode. In this work ZnO thin film was conformally deposited by atomic layer deposition (ALD) method on vertically aligned SiNW arrays, fabricated by electroless metal deposition and etching method with the help of ultrasonication. The current–voltage and capacitance–voltage characteristics were measured to show the electronic properties of the device. The current–voltage characteristics show the nonlinear rectifying nature of the SiNW/ZnO core–shell heterojunction diode with ideality factor and barrier height of 3.2 and 0.68 eV respectively. The barrier height measured from C–V characteristics is 0.97 V. The difference between barrier heights calculated from both I–V and C–V characteristics show that barrier inhomogeneities can be present between the interface of Si and ZnO. However, the satisfactory performance of junction characteristics ideality factor and turn-on voltage of the Si/ZnO core–shell heterojunction diodes indicates their potential applications in optoelectronics and photonics.


ALD Silicon nanowire Zinc oxide Core–shell heterostructure Barrier height 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are cordially thankful to Dr. Pankaj Mishra and his group in Laser Materials Processing Division and DAE-RRCAT, Indore for availing some facilities to complete a part of the above project.


  1. 1.
    V. S. Kale, R. R. Prabhakar, S. S. Pramana, M. Rao, C. H. Sow, K. B. Jinesh, and S. G. Mhaisalkar, Phys. Chem. Chem. Phys., 14, 4614 (2012).CrossRefGoogle Scholar
  2. 2.
    J. H. Choi, S. N. Das, K. J. Moon, J. P. Kar, and J. M. Myoung, Solid-State Electron, 54, 1582 (2010).Google Scholar
  3. 3.
    H. D. Um, S. A. Moiz, K. T. Park, J. Y. Jung, S. W. Jee, C. H. Ahn, D. C. Kim, H. K. Cho, D. W. Kim, and J. H. Lee, Appl. Phys. Lett., 98, 033102 (2011).CrossRefGoogle Scholar
  4. 4.
    J. Hu, Z. Chen, Y. Sun, H. Jiang, N. Wang, and R. J. Zou, Mater. Chem., 19, 7011 (2009).Google Scholar
  5. 5.
    H. Kang, J. Park, T. Choi, H. Jung, K. H. Lee, S. Im, and H. Kim, Appl. Phys. Lett., 100, 041117 (2012).CrossRefGoogle Scholar
  6. 6.
    P. Wang, C. Jin, X. Wu, H. Zhan, Y. Zhou, H. Wang, and J. Kang, AIP Advances, 2, 022139, (2012).CrossRefGoogle Scholar
  7. 7.
    P.Hazra, and S. Jit, Int. J. Surface Science and Engineering, 7, 285, (2013).Google Scholar
  8. 8.
    Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Appl. Phys. Lett., 78, 2214 (2001).CrossRefGoogle Scholar
  9. 9.
    V. T. Pham, V. N. Le, A. T. Chu, T. T. Pham, N. K. Tran, H. D. Pham, and T. H. Pham, Adv. Nat. Sci. Nanosci. Nanotechnol. 2, 015016 (2011).Google Scholar
  10. 10.
    E. Garnett, and P. Yang, Nano Lett. 10, 1082 (2010).CrossRefGoogle Scholar
  11. 11.
    S. Chirakkara, and S. B. Krupanidhi, Thin Solid Films, 520, 5894 (2012).CrossRefGoogle Scholar
  12. 12.
    S. Majumdar, and P. Banerji, J. Appl. Phys. 105, 043704 (2009).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronics EngineeringIndian Institute of Technology, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations