Skip to main content

Hydrothermal Growth and Characterization of ZnO Nanomaterials

  • Conference paper
Physics of Semiconductor Devices

Abstract

ZnO nanostructures are synthesised by hydrothermal method from zinc acetate dihydrate (Zn(CH3COO)2.2H2O) using water as a solvent. NaOH solution in water is used to adjust the pH of the growth solution. The ZnO nanostructures are synthesised from solution with pH varying from 7 to 12. The structural, morphology, and optical properties of the grown ZnO nanostructures are characterized by XRD, FESEM, EDS, UV-vis and photoluminescence spectroscopy. The growth of hexagonal shaped nanocrystals is observed at pH value of 7 and as the pH of the growth solution is increased the morphology of the nanomaterials changes from hexagonal rod shapes to hexagonal platelet shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Xu and Z. L Wang, Nano Res, 3, 676 (2010).

    Google Scholar 

  2. U. Ozgur,Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin, S. J. Cho, H. Morkoc, J.Appl. Phys, 98, 041301 (2005).

    Google Scholar 

  3. W. Lee, M. C. Jeong and J. M. Myoung. Nanotechnology,15, 254 (2004).

    Google Scholar 

  4. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, Science, 292, 1897(2001).

    Google Scholar 

  5. Z.L. Wang, J. Phys.: Condens. Matter, 16, R829 (2004).

    Google Scholar 

  6. Z. Yang, Q. Liu, H. Yu, B. Zou, Y.Wang and T. H. Wang, Nanotechnology, 19, 035704 (2008).

    Google Scholar 

  7. H. Zhou, H. Alves, D. M. Hofmann, W. Kriegseis, B. K. Meyer, G. Kaczmarczyk, and A. Hoffmann, Appl. Phys. Lett.,80, 210 (2002).

    Article  Google Scholar 

  8. K. Vanheusden, W.L Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnade, J. Appl. Phys. 79, 7983 (1996).

    Google Scholar 

  9. X. M. Fan, J. S. Lian, L. Zhao, and Y. H. Liu, Appl. Sur. Sci. 252, 420 (2005).

    Google Scholar 

  10. R. S. Zeferino, M. B. Flores, U. Pal, 2011 J. Appl. Phys. 109, 014308 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Gopalakrishna Naik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Bhat, S., Shrisha, B.V., Naik, K.G. (2014). Hydrothermal Growth and Characterization of ZnO Nanomaterials. In: Jain, V., Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-03002-9_154

Download citation

Publish with us

Policies and ethics