Skip to main content

Characterization of Carbon Nanotube Field Effect Transistor Using Simulation Approach

  • Conference paper

Part of the book series: Environmental Science and Engineering ((ENVENG))

Abstract

As the size of the Si MOSFET approaches towards its limiting value, various short channel effects appear to affect its performance. Carbon nanotube field effect transistor (CNTFET) is one of the novel nanoelectronic devices that overcome those MOSFETs limitations. In this paper we have studied the effect of scaling carbon nanotube (CNT) diameter, insulator thickness and high-k dielectric materials on current-voltage characteristics of co-axial gated ballistic n-type CNTFET. The device metrics such as drive current (Ion), leakage current (Ioff), Ion/Ioff ratio, transconductance, subthreshold slope (S) and drain induced barrier lowering (DIBL) are also studied in this paper. The simulation results obtained are then compared with conventional nanoscale n-type MOSFET. It has been concluded that CNTFET seem to provide better performance than conventional nanoscale n-type MOSFET in term of high speed capability and lower switching power consumption.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Hasegawa, S. Kasai, and T. Sato, IEICE Transaction on Electron, E87-C, 1757 (2004).

    Google Scholar 

  2. A.M. Hashim, H.H. Pung, C.Y. Pin, Jurnal Teknologi, 49, 129 (2008).

    Google Scholar 

  3. D. Dass, R. Prasher, and R. Vaid, Journal of nano and electronic physics, 5, 020141 (2013).

    Google Scholar 

  4. P. L. McEuen, M. S. Fuhrer, and H. Park, IEEE Transaction on Nanotechnology, 1, 78 (2002).

    Article  Google Scholar 

  5. M. S. Dresselhaus, Carbon Nanotubes, 1998. Physics World.com.

    Google Scholar 

  6. M. S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, New York: Springer-Verlag, 329 (2001).

    Google Scholar 

  7. S. J. Tans, R. M. Vershueren, and C. Dekker, Nature, 393, 49 (1998).

    Article  Google Scholar 

  8. A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, and H. Dai, Nature Materials, 1, 241 (2002).

    Article  Google Scholar 

  9. A. Rahman, J. Wang, J. Guo, Md. Sayed Hasan, Y.Liu, A. Matsudaira, S. S. Ahmed, S. Datta, and M. Lundstrom, FETToy, 10254/nanohub-r220.4, 2006.

    Google Scholar 

  10. A. Rahman, J.Guo, S. Datta, and M. Lundstrom, IEEE Transaction on Electron Devices, 50, 1853 (2003).

    Article  Google Scholar 

  11. R. Chau, B. Boyanov, B. Doyle, M. Doczy, S. Datta, S. Hareland, B. Jin, J. Kavalieros, and M. Metz, Physica E, 19, 1 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Vaid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dass, D., Prasher, R., Vaid, R. (2014). Characterization of Carbon Nanotube Field Effect Transistor Using Simulation Approach. In: Jain, V., Verma, A. (eds) Physics of Semiconductor Devices. Environmental Science and Engineering(). Springer, Cham. https://doi.org/10.1007/978-3-319-03002-9_147

Download citation

Publish with us

Policies and ethics