Synthesis of Vertical Graphene by Microwave Plasma Enhanced Chemical Vapor Deposition Technique

  • Atul Bisht
  • Sreekumar Chockalingam
  • O. S. Panwar
  • B. P. Singh
  • Ajay Kesarwani
  • Jagdish Chand
Part of the Environmental Science and Engineering book series (ESE)

Abstract

Vertical graphene was synthesized on nickel substrate using microwave plasma enhanced chemical vapor deposition technique by varying gas pressure from 5 to 30 Torr under various mixing ratios of argon, hydrogen and methane. The Raman spectra show two major fingerprints of graphene, 2D peak at 2,700 cm−1 and G peak 1,580 cm−1. Scanning electron microscopy microstructure revealed flower like graphene structure which could find applications in gas sensing and field emission due to high surface-to-volume ratio.

Keywords

Graphene Microwave plasma enhanced chemical vapor deposition Raman spectroscopy Scanning electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors are grateful to Prof. R. C. Budhani, Director, CSIR-National Physical Laboratory, New Delhi (India), for his kind permission to publish this paper. They wish to thank Mr. A. K. Sood for providing the SEM micrographs, Mr. Sandeep Singh for providing AFM micrograph and R. K. Tripathi, for his help and useful discussion. Mr. Atul Bisht and Mr. Ajay Kumar Kesarwani are grateful to the University Grant Commission (UGC) and Council of Scientific Industrial Research (CSIR), Government of India, respectively, for financial assistance during the course of this work.

References

  1. 1.
    A. K. Geim. Science, 324, 1530 (2009).CrossRefGoogle Scholar
  2. 2.
    K. Novoselov, A. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science, 306, 666 (2004).Google Scholar
  3. 3.
    Z. Bo, Y Yang, J. Chen, K. Yu, J. Yan, K. Cen, Nanoscale, 5, 5180, (2013).CrossRefGoogle Scholar
  4. 4.
    Y. Kim, W. Song, S. Y. Lee, C. Jeon, W. Jung, M. Kim, C. Y. Park, Appl. Phys. Lett., 98, 263106 (2011).CrossRefGoogle Scholar
  5. 5.
    K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima and M. Tachibana, J. Appl. Phys., 101, 094306 (2007).Google Scholar
  6. 6.
    Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng, J. Mater. Chem., 14, 469 (2004).CrossRefGoogle Scholar
  7. 7.
    R. J. Nemanich, S. A. Solin, Phys. Rev. B, 20, 392 (1979).CrossRefGoogle Scholar
  8. 8.
    S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina Morales, H. Nakai, J. Appl. Phys., 97, 104320 (2005).Google Scholar
  9. 9.
    Z. H. Ni, H. M. Fan, Y. P. Feng, Z. X. Shen, B. J. Yangand, Y. H. Wu, J. Chem. Phys., 124, 204703 (2006).Google Scholar
  10. 10.
    M. Zhu, J. Wang, B. C. Holloway, R. A. Outlaw, X. Zhao, K. Hou, V. Shutthanandan D. M. Manos, Carbon, 45, 2229 (2007).CrossRefGoogle Scholar
  11. 11.
    I. Levchenko, K. Ostrikov, A. E. Rider, E. Tam, S. V. Vladimirov, S. Xu, Phys. Plasmas, 14, 063502 (2007).Google Scholar
  12. 12.
    M. Hiramatsu, Y. Nihashi, H. Kondo, M. Hori, Jpn. J. Appl. Phys., 45, 5522 (2006).Google Scholar
  13. 13.
    Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S. S. Pei, Appl. Phys. Lett., 93, 113103 (2008).CrossRefGoogle Scholar
  14. 14.
    L. Huang Q. H. Chang, G. L. Guo, Y. Liu, Y. Q. Xie, T. Wang, B. Ling, H. F. Yang, Carbon, 50, 551 (2012).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Atul Bisht
    • 1
  • Sreekumar Chockalingam
    • 1
  • O. S. Panwar
    • 1
  • B. P. Singh
    • 2
  • Ajay Kesarwani
    • 1
  • Jagdish Chand
    • 1
  1. 1.Polymorphic Carbon Thin Films Group, Physics of Energy HarvestingCSIR-National Physical LaboratoryNew DelhiIndia
  2. 2.Physics and Engineering of Carbon, Material Physics and Engineering DivisionCSIR-National Physical LaboratoryNew DelhiIndia

Personalised recommendations