How to Achieve High Quality Large Area Monolayer Graphene with Field Effect Mobility of 20,000 cm2/Vs

Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

High quality graphene monolayers were grown using chemical exfoliation method by sonicating the highly ordered pyrolytic graphite in organic solvents. Properties of as exfoliated graphene layers were found to be strongly dependent on dielectric constant of the solvents. This was corroborated by confocal Raman spectroscopy and electrical measurements. Graphene samples exfoliated in solvents with low dielectric constant show diminutive D band intensities and excellent field effect mobility of 20,000 cm2/Vs and in solvents with high dielectric constant, D band intensity increases and mobility reduces to 11,000 cm2/Vs due to doping induced defects in graphene layers. Our results also show up shift in minimum conductivity point with doping level due to inhomogeneous potential induced by point defects near Dirac point.

Keywords

Graphene Chemical exfoliation Doping Dirac point Carrier mobility Dielectric constant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim, K. S. Novoselov, Nature materials, 6, 183–91 (2007).Google Scholar
  2. 2.
    X. Du, I. Skachko, A. Barker, E. Y. Andrei, Nature nanotechnology, 3, 491–5 (2008).Google Scholar
  3. 3.
    S. Sun, Z. Zhang, P. Wu, ACS applied materials & interfaces, 5, 5085–90 (2013).Google Scholar
  4. 4.
    M. M. Sadeghi, I. Jo, L. Shi, Proceedings of the National Academy of Sciences, 1–6 (2013).Google Scholar
  5. 5.
    P. Kumar Srivastava, S. Ghosh, Applied Physics Letters, 102, 043102 (2013).Google Scholar
  6. 6.
    T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono, N. Umezu, K. Miyahara, S. Hayazaki, S. Nagai, Y. Mizuguchi, Y. Murakami, D. Hobara, Applied Physics Letters, 102, 023112 (2013).Google Scholar
  7. 7.
    A. Ouerghi, A. Kahouli, D. Lucot, M. Portail, L. Travers,, 191910, 1–4 (2010).Google Scholar
  8. 8.
    S. Park, R. S. Ruoff, Nature nanotechnology, 4, 217–24 (2009).Google Scholar
  9. 9.
    M. Alfè, V. Gargiulo, R. Di Capua, F. Chiarella, J.-N. Rouzaud, A. Vergara, A. Ciajolo, ACS applied materials & interfaces, 4, 4491–8 (2012).Google Scholar
  10. 10.
    J. Wang, K. K. Manga, Q. Bao, K. P. Loh, 8888–8891 (2011).Google Scholar
  11. 11.
    L. Mao, K. Zhang, H. S. On Chan, J. Wu, Journal of Materials Chemistry, 22, 80 (2012).Google Scholar
  12. 12.
    L. G. Cançado, a Jorio, E. H. M. Ferreira, F. Stavale, C. a Achete, R. B. Capaz, M. V. O. Moutinho, a Lombardo, T. S. Kulmala, A. C. Ferrari, Nano letters, 11, 3190–6 (2011).Google Scholar
  13. 13.
    W. Zhu, V. Perebeinos, M. Freitag, P. Avouris, Physical Review B, 80, 235402 (2009).Google Scholar
  14. 14.
    J.-H. Chen, C. Jang, S. Adam, M. S. Fuhrer, E. D. Williams, M. Ishigami, Nature Physics, 4, 377–381 (2008).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.School of Physical SciencesJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations