Fabrication of High Density Silicon Microprobe Array

  • Shankar Dutta
  • Isha Yadav
  • Praveen Kumar
  • Anand
  • Ramjay Pal
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


High density microprobe arrays have been widely used for several applications. In this work, we are presenting a simple one mask fabrication process of silicon based high density microprobe array (20 × 20) with an array pitch of 20 μm. The dimension of single microprobe structure is: 20 μm × 20 μm × 120 μm. Here, photoresist of 2.5 μm thickness is used as masking layer during the fabrication of microprobe array. The microstructure array is fabricated by using deep reactive ion etching (DRIE). Fabrication aspects of silicon based high density microprobe array are discussed.


Microprobe array Deep reactive ion etching Photoresist masking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M.J. Madau, Fundamental of Microfabrication – The Science of Miniaturization, CRC Press (2002).Google Scholar
  2. 2.
    H.J. D.L. Santos, Introduction to Microelectromechanical (MEMS) Microwave Systems, Artech House, Boston, London (2004),Google Scholar
  3. 3.
    V. Lindroos, M. Tilli, A. Lehto and T. Motooka, Handbook of Silicon Based MEMS Materials and Technologies, William Andrew Appl. Science Pub (2010).Google Scholar
  4. 4.
    N.T. Nguyen and S.T. Wereley, Fundamentals and Applications of Microfluidics, Artech House, Boston, London (2002).Google Scholar
  5. 5.
    C.H. Huang, C. Tsou, and T.H. Lai, DTIP of MEMS & MOEMS, 9-11 April 2008.Google Scholar
  6. 6.
    T. Harimotoa, K. Takeia, T. Kawanoa, A. Ishiharab, T. Kawashimac, H. Kanekod, M. Ishidaa, S. Usui, Biosensors & Bioelectronics, 26, 2368 (2011).Google Scholar
  7. 7.
    S. Dutta, Imran, R. Pal, K.K. Jain, and R. Chatterjee, Microsystem Technologies, 17, 1739 (2011).CrossRefGoogle Scholar
  8. 8.
    S. Dutta, R. Pal, P. Kumar, O. P. Hooda, J. Singh, Shaveta, G. Saxena, P. Datta and R. Chatterjee, Sensors & Transducers Journal, 111(12), 18 (2009).Google Scholar
  9. 9.
    J. F. Rhoads, S. W. Shaw and K. L. Turner, J. Micromech. Microeng. 16, 890 (2006).CrossRefGoogle Scholar
  10. 10.
    R. Ghodssi, P. Lin, MEMS Materials and Processes Handbook, Springer (2011).Google Scholar
  11. 11.
    N. Yazdi, F. Ayazi, and K. Najafi, Proc. IEEE, 86, 1640 (1998).CrossRefGoogle Scholar
  12. 12.
    J. F. Rhoads, S. W. Shaw and K. L. Turner, J. Micromech. Microeng. 16, 890 (2006).CrossRefGoogle Scholar
  13. 13.
    A. Selvakumar, K. Najafi, IEEE Jr. of MEMS 7, 192 (1998).Google Scholar
  14. 14.
    S. Dutta, Shaveta, D.K. Bhattacharya, P. Datta, S.K. Lomash, Proc. of IWPSD 2005, 1, 568 (2005).Google Scholar
  15. 15.
    A.C.R. Grayson, R.S. Shawgo, Y. Li, M.J. Cima, Advanced Drug Delivery Rev. 56, 173 (2004).Google Scholar
  16. 16.
    P. Gris, G. Stemme, IEEE J. MEMS 12,296 (2003).Google Scholar
  17. 17.
    J.D. Zahn, N.H. Talbot, D. Liepmann, A.P. Pisano, Biomedical Microdevices 2, 295 (2000).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shankar Dutta
    • 1
  • Isha Yadav
    • 1
  • Praveen Kumar
    • 1
  • Anand
    • 1
  • Ramjay Pal
    • 1
  1. 1.Solid State Physics LaboratoryDRDOTimarpurIndia

Personalised recommendations