Optical Characterization of Anodically Grown Silicon Dioxide Thin Films

Conference paper
Part of the Environmental Science and Engineering book series (ESE)

Abstract

In silicon-based fabrication processes, silicon dioxide (SiO2) thin film is most widely used insulating film in the manufacture of integrated/discrete devices and microelectro-mechanical systems (MEMS). Various techniques have been established for the synthesis of silicon dioxide thin films. However, anodic oxidation method offers key advantages over the high temperature processes such as low cost, simple experimental set-up, low temperature, etc. In the present work SiO2 thin films are developed on silicon using anodic oxidation technique at room temperature. Constant voltage mode is employed in order to investigate the effect of applied voltage and the electrolyte stirring on thickness, refractive index and chemical bonds of the as-grown oxide films. Spectroscopic ellipsometry and Fourier transform infrared spectroscopy (FTIR) are employed to characterize various properties of the as-grown oxide films. At the applied voltage of 250 V, the highest thickness of 134 nm is obtained. The oxides developed at higher voltages are slightly silicon rich. The present study is aimed to explore the applications of silicon anodic oxidation in MEMS/Microelectronics fabrication.

Keywords

Silicon dioxide Anodic oxidation Thin film 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.E. Thompson, Thin Solid Films, 297, 192 (1997).CrossRefGoogle Scholar
  2. 2.
    V. Karastoyanov, M. Bojinov, J Solid State Electrochem, 13, 309 (2009).Google Scholar
  3. 3.
    H. Hasegawa, S. Arimoto, S. Nunjo, H. Yamamoto, H. Ohno, J Electrochem Soc 135, 424 (1988).Google Scholar
  4. 4.
    J. Rappich, I. Sieber, A. Schopke, W. Foussel, M. Gluck, J. Hersener, Mat Res Soc Symp Proc 451, 215 (1997).Google Scholar
  5. 5.
    W.S. Woon, S.D. Hutagalung, K.Y. Cheong, Thin Solid Films 517, 2808 (2009).CrossRefGoogle Scholar
  6. 6.
    V. Bhatt, S. Chandra, J. Micromech. Microeng. 17, 1066 (2007).CrossRefGoogle Scholar
  7. 7.
    T.F. Hung, H. Wong, Y.C. Cheng, C.K. Pun, J. Electrochem. Soc. 138, 3747 (1991).CrossRefGoogle Scholar
  8. 8.
    H. Aguas, A. Goncalves, L. Pereira, R. Silva, E. Fortunato, R. Martins, Thin Solid Films, 427, 345 (2003).CrossRefGoogle Scholar
  9. 9.
    W.B. Kim, T. Matsumoto, H. Kobayashi, J. Appl. Phys. 105, 103709 (2009).Google Scholar
  10. 10.
    L. Sun, S. Zhang, X.W. Sun, H. Xiaodong, Journal of Electroanalytical Chemistry, 637, 6 (2009).CrossRefGoogle Scholar
  11. 11.
    Y.F. Mei, X.L. Wu, T. Qiu, X.F. Shao, G.G. Siu, Paul K. Chu, Thin Solid Films, 492, 66 (2005).CrossRefGoogle Scholar
  12. 12.
    B.M. Ayupov, S.F. Devyatova, V.G. Erkov, L.A. Semenova, Russian Microelectronics, 37, 141 (2008).CrossRefGoogle Scholar
  13. 13.
    M.F. Ceiler Jr., P.A. Kohl and S.A. Bidstrup, J. Electrochem. Soc. 142, 2067 (1995).CrossRefGoogle Scholar
  14. 14.
    C.F. Lin, W.T. Tseng, M.S. Feng, J. Appl. Phys. 87, 2808 (2000).Google Scholar
  15. 15.
    T. Roschuk, J. Wojcik, X. Tan, J.A. Davies, P. Mascher, J. Vac. Sci. Technol. A, 22, 883 (2004).CrossRefGoogle Scholar
  16. 16.
    M. Stadtmueller, J. Electrochem. Soc. 139, 3669 (1992).CrossRefGoogle Scholar
  17. 17.
    G. Lucovsky, M.J. Manitini, J.K. Srivastava, E.A. Irene, J. Vac. Sci. Technol. B, 5, 530 (1987).CrossRefGoogle Scholar
  18. 18.
    B.N. Joshi, A.M. Mahajan, Optoelectronics and Advanced MaterialsRapid Communications, 1, 659 (2007).Google Scholar
  19. 19.
    W.A. Pliskin, J. Electrochem. Soc. 134, 2819 (1987).CrossRefGoogle Scholar
  20. 20.
    M.I. Alayo, I. Pereyra, W.L. Scopel, M.C.A. Fantini, Thin Solid Films, 402, 154 (2002).CrossRefGoogle Scholar
  21. 21.
    J. Lambers, P. Hess, J. Appl. Phys. 94, 2937 (2003).Google Scholar
  22. 22.
    F.L. Galeener, Physical Review B, 19, 4292 (1979).CrossRefGoogle Scholar
  23. 23.
    P.G. Pai, S.S. Chao, Y. Takagi, G. Lucovsky, J. Vac. Sci. Technol. A, 4, 689 (1986).Google Scholar
  24. 24.
    W.A. Pliskin, H.S. Lehman, J. Electrochem. Soc. 112, 1013 (1965).CrossRefGoogle Scholar
  25. 25.
    W.A. Pliskin, J. Vac. Sci. Technol. 14, 1064 (1977).Google Scholar
  26. 26.
    I.W. Boyd, J.I.B. Wilson, Appl. Phys. Lett. 50, 320 (1987).CrossRefGoogle Scholar
  27. 27.
    L.L. Tedder, J.E. Crowell, M.A. Logan, J. Vac. Sci. Technol. A, 9, 1002 (1991).Google Scholar
  28. 28.
    D.V. Tsu, G. Lucovsky, B.N. Davidson, Physical Review B, 40, 1795 (1989).CrossRefGoogle Scholar
  29. 29.
    W.S. Liao, C.H. Lin and S.C. Lee, Appl. Phys. Lett. 65, 2229 (1994).CrossRefGoogle Scholar
  30. 30.
    D.J. Monk, D.S. Soane, R.T. Howe, Transducers, juni 24-27, 647 (1991).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.MEMS and Micro/Nano systems Laboratory, Department of PhysicsIITHyderabadIndia

Personalised recommendations