Development of Lactate Biosensor Based on Electro Statically Functionalized Graphene Oxide Bound Lactate Oxidase

  • Meeta Gera
  • V. K. Jain
  • N. Suman
Conference paper
Part of the Environmental Science and Engineering book series (ESE)


The search for new advanced materials is an important area of contemporary research in numerous disciplines of science and the development of many new technologies. Great attention has been paid in recent years to nano-structured materials of different chemical composition, produced as nanoparticles, nanowires or nanotubes. In various fields of chemical analysis, there have been an increasing number of applications of graphene based material. In the present work Lactate oxidase has been immobilized onto the surface of graphene oxide polymeric film through glutraldehyde coupling. This film acted as a working electrode. The resulting biosensor was characterized electrochemically and detection performances were evaluated. It can keep more than 80 % of its initial activity after continuously using for three months. The sensor is also unaffected by the various serum interfering agent. The present lactate biosensor showed excellent properties for the sensitive determination of lactic acid with good reproducibility and remarkable stability.


Lactate Lactate oxidase (LOD) Immobilization Graphene oxide Electrostatic ally functionalization Lactate biosensor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to express our gratitude to the Founder President of Amity University, Dr Ashok K. Chauhan, for his encouragement and guidance.


  1. 1.
    O. Smutok, G. Gayda, K. Dmytruk, H. Klepach, M. Nisnevitch, A. Sibirny, C. Puchalski, D. Broda, W. Schuhmann, M. Gonchar and V. Sibirny; BiosensorsEmerging Materials and Applications; Ed. by Serra P. A., InTech, ISBN: 978-953-307-328-6,401-446 (2011).Google Scholar
  2. 2.
    Hirano, K.; Yamato, H.; Kunimoto, K. & Ohwa, Sensors and Actuators B: Chemical, 86, 88-93 (2002).CrossRefGoogle Scholar
  3. 3.
    Herrero, A.M.; Requena, T.; Reviejo, A.J. & Pingarron, J.M. Food Research and Technology, 219, 557-560 (2004).Google Scholar
  4. 4.
    P. B. Oliver, Am. J. Medicine, 48, 209-222 (1970).Google Scholar
  5. 5.
    M. J. Murray, Am. J. Surgery, 167, 575-577 (1994).Google Scholar
  6. 6.
    B. N. Cowan, I. I. J. G. Burns, P. Boyle, I. M. Ledingham, Anaesthes, 36, 750-755 (1984).Google Scholar
  7. 7.
    M. Mascini, D. Moscone, G. Palleschi, Anal. Chim. Acta 157, 45-51 (1984).Google Scholar
  8. 8.
    D. Pieffer, B.Mollor, N. Klimon, J.Szoponik, Biosens. Bioelectron, 12, 539-550 (1997).Google Scholar
  9. 9.
    A.Chaubey, K.K Pande, M.K Pandey, V.S. Singh, Appl. Biochem. Biotechnol. 96, 239-248 (2001).Google Scholar
  10. 10.
    F. Schubert, D. Kirstein, K.L. Schrober, F.W. Schellor, Anal. Chim. Acta 169, 391-396 (1995).Google Scholar
  11. 11.
    M.J. Lobo-Castannon, A.J. Miranda-Ordieres, P. Punon-Blanco, Anal. Chim. Acta 346, 165-174 (1997).Google Scholar
  12. 12.
    M. Trojanoviez, O. Geschke, T. Krawczynski, V. Krawcyk, K. Cammann, Sens. Actuators 28, 191-199 (1995).Google Scholar
  13. 13.
    P. Gros, H. Durliat, M. Comtat, Electrochim. Acta, 46, 643-650 (2000).Google Scholar
  14. 14.
    A. Chaubey, M. Gerard, R.Singal, V.S. Singh, B.D. Malhotra, Electrochim. Acta 46, 723-729 (2000).Google Scholar
  15. 15.
    Suman R.Singal, Amity l. Sharma, B.D. Malhotra and C.S.Pundir, Sens. Actuators 107, 768-772 (2005).Google Scholar
  16. 16.
    J. Wang, M. Musameh, Y. Lin. J. Am. Chem. Soc. 125 2408 – 2409 (2003).CrossRefGoogle Scholar
  17. 17.
    O. Lockridge, V. Massey, P.A. Sullivan, J. Biol. Chem. 138, 535-536 (1941).Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Amity Institute for Advanced Research and Studies (Materials and Devices)Amity UniversitySector-125 NoidaIndia

Personalised recommendations