Advertisement

Room Temperature-Processed TiO2 MIM Capacitors for DRAM Applications

  • Revathy Padmanabhan
  • Navakanta Bhat
  • S. Mohan
Part of the Environmental Science and Engineering book series (ESE)

Abstract

We report the room temperature fabrication of Ta/TiO2/Ta metal–insulator-metal (MIM) capacitors (mainly, for DRAM applications). The fabricated devices show high capacitance density (~15 fF/μm2), and low leakage current density of 6.4 × 10−8 A/cm2 (27 °C) and 3.3 × 10−6 A/cm2 (125 °C) at −1 V. We analyze the electrical and material characteristics of the fabricated capacitors, and compare the device performance of these capacitors with other TiO2 and TiO2-based MIM capacitors reported in recent literature.

Keywords

Metal-insulator-metal (MIM) Ta TiO2 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was supported by the Ministry for Communication and Information Technology (MCIT), Govt. of India, under the Centre for Excellence in Nanoelectronics (CEN) project. The authors would like to thank Mr. Sangeeth K for his assistance in obtaining SEM images, and Mr. Venkateswaran S for his assistance in obtaining XPS data.

References

  1. 1.
    International Technology Roadmap for Semiconductors, Front End Processes (Semiconductor Industry Association, 2012 Edition).Google Scholar
  2. 2.
    C. H. Cheng, S. H. Lin, K. Y. Jhou, W. J. Chen, C. P. Chou, F. S. Yeh, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, IEEE Electron Device Lett., 29, 845 (2008).CrossRefGoogle Scholar
  3. 3.
    B. Hudec, K. Husekova, E. Dobrocka, T. Lalinsky, J. Aarik, A. Aidla, and K. Frohlich, IOP Conf. Ser.: Mater. Sci. Eng., 8, 012024 (2010).CrossRefGoogle Scholar
  4. 4.
    M. Popovici, M. -S. Kim, K. Tomida, J. Swerts, H. Tielens, A. Moussa, O. Richard, H. Bender, A. Franquet, T. Conard, L. Altimime, S. V. Elshocht, and J. A. Kittl, Microelectron. Eng., 88, 1517 (2011).Google Scholar
  5. 5.
    B. Hudec, K. Husekova, A. Tarre, J. H. Han, S. Han, A. Rosova, W. Lee, A. Kasikov, S. J. Song, J. Aarik, C. S. Hwang, K. Frohlich, Microelectron. Eng., 88, 1514 (2011).Google Scholar
  6. 6.
    S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Hoboken, NJ: Wiley, 1981).Google Scholar
  7. 7.
    P. Stefanov, M. Shipochka, P. Stefchev, Z. Raicheva, V. Lazarova, and L. Spassov, J. Phys.: Conf. Ser.,100, 012039 (2008).Google Scholar
  8. 8.
    C. H. Cheng, H. C. Pan, H. J. Yang, C. N. Hsiao, C. P. Chou, S. P. McAlister, and A. Chin, IEEE Electron Device Lett.,28, 1095 (2007).CrossRefGoogle Scholar
  9. 9.
    C. C. Huang, C. H. Cheng, A. Chin, and C. P. Chou, Electrochem. Solid-State Lett., 10, H287 (2007).CrossRefGoogle Scholar
  10. 10.
    C. H. Cheng, H. C. Pan, C. C. Huang, C. P. Chou, C. N. Hsiao, J. Hu, M. Hwang, T. Arikado, S. P. McAlister, and A. Chin, IEEE Electron Device Lett., 29, 1105 (2008).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Revathy Padmanabhan
    • 1
    • 2
  • Navakanta Bhat
    • 1
    • 2
  • S. Mohan
    • 2
  1. 1.Department of Electrical Communication EngineeringIndian Institute of ScienceBangaloreIndia
  2. 2.Centre for Nano Science and Engineering (CeNSE)Indian Institute of ScienceBangaloreIndia

Personalised recommendations