Skip to main content

Classification of EEG Signals by an Evolutionary Algorithm

  • Chapter
Advances in Knowledge Discovery and Management

Abstract

The goal of this work is to predict the state of alertness of an individual by analyzing the brain activity through electroencephalographic data (EEG) captured with 58 electrodes. Alertness is characterized here as a binary variable that can be in a “normal” or “relaxed” state.We collected data from 44 subjects before and after a relaxation practice, giving a total of 88 records. After a pre-processing step and data validation, we analyzed each record and discriminate the alertness states using our proposed “slope criterion”.Afterwards, several commonmethods for supervised classification (k nearest neighbors, decision trees (CART), random forests, PLS and discriminant sparse PLS) were applied as predictors for the state of alertness of each subject. The proposed “slope criterion” was further refined using a genetic algorithm to select the most important EEG electrodes in terms of classification accuracy.Results show that the proposed strategy derives accurate predictive models of alertness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, C., Sijercic, Z.: Classification of EEG signals from four subjects during five mental tasks. In: Proceedings of the Conference on Engineering Applications in Neural Networks, London, United Kingdom, pp. 407–414 (1996)

    Google Scholar 

  2. Ben Khalifa, K., Bédoui, M., Dogui, M., Alexandre, F.: Alertness states classification by SOM and LVQ neural networks. International Journal of Information Technology 1, 131–134 (2005)

    Google Scholar 

  3. Breiman, L.: Random forests. Machine Learning 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  4. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression trees. Wadsworth Advanced Books and Software (1984)

    Google Scholar 

  5. Broadhursta, D., Goodacrea, R., Ah Jonesa, A., Rowlandb, J.J., Kelp, D.B.: Genetic algorithms as a method for variable selection in multiple linear regression and partial least squares regression, with applications to pyrolysis mass spectrometry. Analytica Chimica Acta 348, 71–86 (1997)

    Article  Google Scholar 

  6. Cavill, R., Keun, H.C., Holmes, E., Lindon, J.C., Nicholson, J.K., Ebbels, T.M.: Genetic algorithms for simultaneous variable and sample selection in metabonomics. Bioinformatics 25, 112–118 (2009)

    Article  Google Scholar 

  7. Cecotti, H., Graeser, A.: Convolutional neural network with embedded fourier transform for EEG classification. In: International Conference on Pattern Recognition, Tampa, Florida, pp. 1–4 (2008)

    Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. SIAM (1992)

    Google Scholar 

  9. De Jong, K.A.: An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD thesis, University of Michigan (1975)

    Google Scholar 

  10. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  11. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer (2009)

    Google Scholar 

  12. Hazarika, N., Chen, J., Tsoi, C., Sergejew, A.: Classification of EEG signals using the wavelet transform. Signal Processing 59, 61–72 (1997)

    Article  MATH  Google Scholar 

  13. Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  14. Jaffard, S., Meyer, Y.: Wavelet methods for pointwise regularity and local oscillations of functions. Mem. Amer. Math. Soc. 123(587) (1996)

    Google Scholar 

  15. Jasper, H.H.: Report of the committee on methods of clinical examination in electroencephalography. Electroencephalography and Clinical Neurophysiology 10, 1–370 (1958)

    Article  Google Scholar 

  16. Lé Cao, K.-A., Rossouw, D., Robert-Granié, C., Besse, P.: Sparse PLS: Variable selection when integrating omics data. Statistical Applications in Genetics and Molecular Biology 7(Article 35) (2008)

    Google Scholar 

  17. Legrand, P.: Débruitage et interpolation par analyse de la régularité Höldérienne. Application à la modélisation du frottement pneumatique-chaussée. PhD thesis, École Centrale de Nantes et Université de Nantes (2004)

    Google Scholar 

  18. Levy Vehel, J., Seuret, S.: The 2-microlocal formalism. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proc. Sympos. Pure Math., vol. 72, Part 2, pp. 153–215 (2004)

    Google Scholar 

  19. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn. Academic Press (2008)

    Google Scholar 

  20. Naitoh, P., Johnson, L.C., Lubin, A.: Modification of surface negative slow potential (CNV) in the human brain after total sleep loss. Electroencephalography and Clinical Neurophysiology 30, 17–22 (1971)

    Article  Google Scholar 

  21. Niedermeyer, E., Lopes da Silva, F.: Electroencephalography, basic principles, clinical applications and related fields, 5th edn., ch. 9 (2005)

    Google Scholar 

  22. Obermaier, B., Guger, C., Neuper, C., Pfurtscheller, G.: Hidden markov models for online classification of single trial EEG data. Pattern Recognition Letters 22, 1299–1309 (2001)

    Article  MATH  Google Scholar 

  23. Rosenblith, W.: Some quantifiable aspects of the electrical activity of the nervous system (with emphasis upon responses to sensory stimuli). Revs. Mod. Physics 31, 532–545 (1959)

    Article  Google Scholar 

  24. Shaker, M.: EEG waves classifier using wavelet transform and fourier transform. International Journal of Biological and Life Sciences, 85–90 (2005)

    Google Scholar 

  25. Subasi, A., Akin, M., Kiymik, K., Erogul, O.: Automatic recognition of vigilance state by using a wavelet-based artificial neural network. Neural Comput. and Applic. 14, 45–55 (2005)

    Article  Google Scholar 

  26. Tecce, J.J.: A CNV rebound effect. Electroencephalography and Clinical Neurophysiology 46, 546–551 (1979)

    Article  Google Scholar 

  27. Tenenhaus, M.: La régression PLS, Théorie et Pratique (1998)

    Google Scholar 

  28. Timsit-Berthier, M., Gerono, A., Mantanus, H.: Inversion de polarité de la variation contingente négative au cours d’état d’endormissement. EEG Neurophysiol. 11, 82–88 (1981)

    Google Scholar 

  29. Vézard, L.: Réduction de dimension en apprentissage supervisé. Applications à l’étude de l’activité cérébrale. Master’s thesis, INSA de Toulouse (2010), http://www.sm.u-bordeaux2.fr/~vezard/wp-content/uploads/2012/05/rapport.pdf

  30. Vuckovic, A., Radivojevic, V., Chen, A., Popovic, D.: Automatic recognition of alertness and drowsiness from EEG by an artificial neural network. Medical Engineering and Physics 24, 349–360 (2002)

    Article  Google Scholar 

  31. Walter, W.G., Cooper, R., Aldridge, V., McCallum, W.C., Winter, A.: Contingent negative variation: An electric sign of sensorimotor association and expectancy in the human brain. Nature 203, 380–384 (1964)

    Article  Google Scholar 

  32. Yeo, M., Li, X., Shen, K., Wilder-Smith, E.: Can SVM be used for automatic EEG detection of drowsiness? Safety Science 47, 115–124 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Vézard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vézard, L., Legrand, P., Chavent, M., Faïta-Aïnseba, F., Clauzel, J., Trujillo, L. (2014). Classification of EEG Signals by an Evolutionary Algorithm. In: Guillet, F., Pinaud, B., Venturini, G., Zighed, D. (eds) Advances in Knowledge Discovery and Management. Studies in Computational Intelligence, vol 527. Springer, Cham. https://doi.org/10.1007/978-3-319-02999-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02999-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02998-6

  • Online ISBN: 978-3-319-02999-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics