Skip to main content

Coarse-Grained Models of the Proteins Backbone Conformational Dynamics

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

Coarse-grained models are more and more frequently used in the studies of the proteins structural and dynamic properties, since the reduced number of degrees of freedom allows to enhance the conformational space exploration. This chapter attemps to provide an overview of the various coarse-grained models that were applied to study the functional conformational changes of the polypeptides main chain around their native state. It will more specifically discuss the methods used to represent the protein backbone flexibility and to account for the physico-chemical interactions that stabilize the secondary structure elements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed M, Davis J, Aucoin D, Sato T, Ahuja S, Aimoto S, Elliott JI, Van Nostrand WE, Smith SO (2010) Structural conversion of neurotoxic amyloid-beta(1–42) oligomers to fibrils. Nat Struct Mol Biol 17:561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Alemani D, Collu F, Cascella M, Dal Peraro M (2010) A nonradial coarse-grained potential for proteins produces naturally stable secondary structure elements. J Chem Theory Comput 6:315

    Article  CAS  Google Scholar 

  3. Bahar I, Atilgan A, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173

    Article  CAS  PubMed  Google Scholar 

  4. Bahar I, Kaplan M, Jernigan R (1997) Short-range conformational energies, secondary structure propensities, and recognition of correct sequence-structure matches. Proteins 29:292

    Article  CAS  PubMed  Google Scholar 

  5. Basdevant N, Borgis D, Ha-Duong T (2007) A coarse-grained protein-protein potential derived from an all-atom force field. J Phys Chem B 111:9390

    Article  CAS  PubMed  Google Scholar 

  6. Basdevant N, Borgis D, Ha-Duong T (2013) Modeling protein-protein recognition in solution using the coarse-grained force field SCORPION. J Chem Theory Comput 9:803

    Article  CAS  Google Scholar 

  7. Bond PJ, Holyoake J, Ivetac A, Khalid S, Sansom MSP (2007) Coarse-grained molecular dynamics simulations of membrane proteins and peptides. J Struct Biol 157:593

    Article  CAS  PubMed  Google Scholar 

  8. Bonvin A (2006) Flexible protein-protein docking. Curr Opin Struct Biol 16:194

    Article  CAS  PubMed  Google Scholar 

  9. Chebaro Y, Mousseau N, Derreumaux P (2009) Structures and thermodynamics of alzheimer’s amyloid-β aβ(16–35) monomer and dimer by replica exchange molecular dynamics simulations: implication for full-length aβ fibrillation. J Phys Chem B 113:7668

    Article  CAS  PubMed  Google Scholar 

  10. Chebaro Y, Pasquali S, Derreumaux P (2012) The coarse-grained opep force field for non-amyloid and amyloid proteins. J Phys Chem B 116:8741

    Article  CAS  PubMed  Google Scholar 

  11. Chng C-P, Yang L-W (2008) Coarse-grained models reveal functional dynamics–II. Molecular dynamics simulation at the coarse-grained level – theories and biological applications. Bioinform Biol Insights 2:171

    Google Scholar 

  12. Chu J-W, Voth GA (2007) Coarse-grained free energy functions for studying protein conformational changes: a double-well network model. Biophys J 93:3860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Clementi C, Nymeyer H, Onuchic JN (2000) Topological and energetic factors: what determines the structural details of the transition state ensemble and “en-route” intermediates for protein folding? An investigation for small globular proteins. J Mol Biol 298:937

    Article  CAS  PubMed  Google Scholar 

  14. Cojocaru V, Balali-Mood K, Sansom MSP, Wade RC (2011) Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Comput Biol 7:e1002152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Derreumaux P (1999) From polypeptide sequences to structures using Monte Carlo simulations and an optimized potential. J Chem Phys 111:2301

    Article  CAS  Google Scholar 

  16. Derreumaux P, Mousseau N (2007) Coarse-grained protein molecular dynamics simulations. J Chem Phys 126:025101

    Article  PubMed  Google Scholar 

  17. DeWitte R, Shakhnovich E (1994) Pseudodihedrals: simplified protein backbone representation with knowledge-based energy. Protein Sci 3:1570

    Article  CAS  PubMed  Google Scholar 

  18. Ding F, Buldyrev SV, Dokholyan NV (2005) Folding Trp-cage to NMR resolution native structure using a coarse-grained protein model. Biophys J 88:147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Durrieu M, Bond P, Sansom M, Lavery R, Baaden M (2009) Coarse-grain simulations of the R-SNARE fusion protein in its membrane environment detect long-lived conformational sub-states. Chem Phys Chem 10:1548

    Article  CAS  PubMed  Google Scholar 

  20. Gabdoulline R, Wade R (1996) Effective charges for macromolecules in solvent. J Phys Chem 100:3868

    Article  CAS  Google Scholar 

  21. Goaś E, Maisuradze GG, Senet P, Ołdziej S, Czaplewski C, Scheraga HA, Liwo A (2012) Simulation of the opening and closing of Hsp70 chaperones by coarse-grained molecular dynamics. J Chem Theory Comput 8:1750

    Article  Google Scholar 

  22. Gunasekaran K, Ma B, Nussinov R (2004) Is allostery an intrinsic property of all dynamics proteins? Proteins 57:433

    Article  CAS  PubMed  Google Scholar 

  23. Ha-Duong T (2010) Protein backbone dynamics simulations using coarse-grained bonded potentials and simplified hydrogen bonds. J Chem Theory Comput 6:761

    Article  Google Scholar 

  24. Haliloglu T, Bahar I (1998) Coarse-grained simulations of conformational dynamics of proteins: application to apomyoglobin. Proteins 31:271

    Article  CAS  PubMed  Google Scholar 

  25. Han W, Wu Y-D (2007) Coarse-grained protein model coupled with a coarse-grained water model: molecular dynamics study of polyalanine-based peptides. J Chem Theory Comput 3:2146

    Article  CAS  Google Scholar 

  26. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964

    Article  CAS  PubMed  Google Scholar 

  27. Hills RD, Brooks CL (2009) Insights from coarse-grained Go models for protein folding and dynamics. Int J Mol Sci 10:889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hills RD, Lu L, Voth GA (2010) Multiscale coarse-graining of the protein energy landscape. PLoS Comput Biol 6:e1000827

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hinsen K (1998) Analysis of domain motions by approximate normal mode calculations. Proteins 33:417

    Article  CAS  PubMed  Google Scholar 

  30. Hoang TX, Seno F, Banavar JR, Cieplak M, Maritan A (2003) Assembly of protein tertiary structures from secondary structures using optimized potentials. Proteins 52:155–165

    Article  CAS  PubMed  Google Scholar 

  31. Hyeon C, Onuchic JN (2007) Internal strain regulates the nucleotide binding site of the kinesin leading head. Proc Natl Acad Sci USA 104:2175

    Article  CAS  PubMed  Google Scholar 

  32. Ishima R, Torchia D (2000) Protein dynamics from NMR. Nat Struct Biol 7:740

    Article  CAS  PubMed  Google Scholar 

  33. Ishima R, Freedberg D, Wang Y, Louis J, Torchia D (1999) Flap opening and dimer-interface flexibility in the free and inhibitor-bound HIV protease and their implications for function. Structure 7:1047

    Article  CAS  PubMed  Google Scholar 

  34. Izvekov S, Voth G (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105

    Article  PubMed  Google Scholar 

  35. Karplus M, McCammon J (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646

    Article  CAS  PubMed  Google Scholar 

  36. Kidera A, Go N (1990) Refinement of protein dynamic structure: normal mode refinement. Proc Natl Acad Sci USA 87:3718

    Article  CAS  PubMed  Google Scholar 

  37. Klein M, Shinoda W (2008) Large-scale molecular dynamics simulations of self-assembling systems. Science 321:798

    Article  CAS  PubMed  Google Scholar 

  38. Klimov D, Thirumalai D (2000) Mechanisms and kinetics of beta-hairpin formation. Proc Natl Acad Sci USA 97:2544

    Article  CAS  PubMed  Google Scholar 

  39. Klimov D, Betancourt M, Thirumalai D (1998) Virtual atom representation of hydrogen bonds in minimal off-lattice models of alpha-helices: effects on stability, cooperativity and kinetics. Fold Des 3:481

    Article  CAS  PubMed  Google Scholar 

  40. Koga N, Kameda T, Okazaki K-i, Takada S (2009) Paddling mechanism for the substrate translocation by AAA+ motor revealed by multiscale molecular simulations. Proc Natl Acad Sci USA 106:18237–18242

    Article  CAS  PubMed  Google Scholar 

  41. Kolinski M, Skolnick J (2004) Reduced models of proteins and their applications. Polymer 45:511

    Article  CAS  Google Scholar 

  42. Levitt M (1976) A simplified representation of protein conformations for rapid simulation of protein folding. J Mol Biol 104:59

    Article  CAS  PubMed  Google Scholar 

  43. Levy R, Perahia D, Karplus M (1982) Molecular dynamics of an α-helical polypeptide: temperature dependence and deviation from harmonic behavior. Proc Natl Acad Sci USA 79:1346

    Article  CAS  PubMed  Google Scholar 

  44. Liwo A, Pincus M, Wawak R, Rackovsky S, Scheraga H (1993) Prediction of protein conformation on the basis of a search for compact structures: test on avian pancreatic polypeptide. Protein Sci 2:1715

    Article  CAS  PubMed  Google Scholar 

  45. Liwo A, Khalili M, Scheraga H (2005) Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue model of polypeptide chains. Proc Natl Acad Sci USA 102(7):2362

    Article  CAS  PubMed  Google Scholar 

  46. Lu Q, Lu HP, Wang J (2007) Exploring the mechanism of flexible biomolecular recognition with single molecule dynamics. Phys Rev Lett 98:128105

    Article  PubMed  Google Scholar 

  47. Majek P, Elber R (2009) A coarse-grained potential for fold recognition and molecular dynamics simulations of proteins. Proteins 76:822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci USA 100:12570

    Article  CAS  PubMed  Google Scholar 

  49. Monticelli L, Kandasamy S, Periole X, Larson R, Tieleman D, Marrink S (2008) The MARTINI coarse-grained force-field: extension to proteins. J Chem Theory Comput 4:819

    Article  CAS  Google Scholar 

  50. Muller-Plathe F (2002) Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back. Chem Phys Chem 3:755

    Article  PubMed  Google Scholar 

  51. Okazaki K-i, Koga N, Takada S, Onuchic JN, Wolynes PG (2006) Multiple-basin energy landscapes for large-amplitude conformational motions of proteins: structure-based molecular dynamics simulations. Proc Natl Acad Sci USA 103:11844

    Article  Google Scholar 

  52. Pasi M, Lavery R, Ceres N (2013) PaLaCe: a coarse-grain protein model for studying mechanical properties. J Chem Theory Comput 9:785

    Article  CAS  Google Scholar 

  53. Popovych N, Sun S, Ebright R, Kalodimos C (2006) Dynamically driven protein allostery. Nat Struct Mol Biol 13:831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Prampolini G (2006) Parametrization and validation of coarse grained force-fields derived from ab initio calculations. J Chem Theory Comput 2:556

    Article  CAS  Google Scholar 

  55. Reith D, Putz M, Muller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624

    Article  CAS  PubMed  Google Scholar 

  56. Reva B, Finkelstein A, Sanner M, Olson A (1997) Residue-residue mean-force potentials for protein structure recognition. Protein Eng 10:865

    Article  CAS  PubMed  Google Scholar 

  57. Samuli Ollila OH, Louhivuori M, Marrink SJ, Vattulainen I (2011) Protein shape change has a major effect on the gating energy of a mechanosensitive channel. Biophys J 100:1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Schomaker V, Trueblood K (1968) On the rigid-body motion of molecules in crystals. Acta Crystallogr B 24:63

    Article  CAS  Google Scholar 

  59. Seo M, Rauscher S, Pomès R, Tieleman DP (2012) Improving internal peptide dynamics in the coarse-grained MARTINI model: toward large-scale simulations of amyloid- and elastin-like peptides. J Chem Theory Comput 8:1774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Srinivasan R, Rose GD (1999) A physical basis for protein secondary structure. Proc Natl Acad Sci USA 96:14258

    Article  CAS  PubMed  Google Scholar 

  61. Sun S (1993) Reduced representation model of protein structure prediction: statistical potential and genetic algorithms. Protein Sci 2:762

    Article  CAS  PubMed  Google Scholar 

  62. Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22:130

    Article  CAS  PubMed  Google Scholar 

  63. Takada S, Luthey-Schulten Z, Wolynes P (1999) Folding dynamics with nonadditive forces: a simulation study of a designed helical protein and a random heteropolymer. J Chem Phys 110:11616

    Article  CAS  Google Scholar 

  64. Takagi F, Kikuchi M (2007) Structural change and nucleotide dissociation of Myosin motor domain: dual Go model simulation. Biophys J 93:3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tama F, Sanejouand Y (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14:1

    Article  CAS  PubMed  Google Scholar 

  66. Terakawa T, Takada S (2011) Multiscale ensemble modeling of intrinsically disordered proteins: p53 N-terminal domain. Biophys J 101:1450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tirion M (1996) Large amplitude elastic motions in proteins from a single-parameter atomic analysis. Phys Rev Lett 77:1905

    Article  CAS  PubMed  Google Scholar 

  68. Tolman JR, Ruan K (2006) NMR residual dipolar couplings as probes of biomolecular dynamics. Chem Rev 106:1720

    Article  CAS  PubMed  Google Scholar 

  69. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15:144

    Article  CAS  PubMed  Google Scholar 

  70. Tozzini V (2010) Minimalist models for proteins: a comparative analysis. Q Rev Biophys 43:333

    Article  CAS  PubMed  Google Scholar 

  71. Tozzini V, Trylska J, Chang C-e, McCammon JA (2007) Flap opening dynamics in HIV-1 protease explored with a coarse-grained model. J Struct Biol 157:606

    Article  CAS  PubMed  Google Scholar 

  72. Treptow W, Marrink S, Tarek M (2008) Gating motions in voltage-gated potassium channels revealed by coarse-grained molecular dynamics simulations. J Phys Chem B 112:3277

    Article  CAS  PubMed  Google Scholar 

  73. Trylska J, Tozzini V, Chang C, McCammon J (2007) HIV-1 protease substrate binding and product release pathways explored with coarse-grained molecular dynamics. Biophys J 92:4179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ueda Y, Taketomi H, Go N (1978) Studies on protein folding, unfolding, and fluctuations by computer simulation. II. A. three-dimensional lattice model of lysozyme. Biopolymers 17:1531

    Google Scholar 

  75. Van Giessen A, Straub J (2006) Coarse-grained model of coil-to-helix kinetics demonstrates the importance of multiple nucleation sites in helix folding. J Chem Theory Comput 2:674

    Article  Google Scholar 

  76. Voegler Smith A, Hall C (2001) Alpha-helix formation: discontinuous molecular dynamics on an intermediate-resolution protein model. Proteins 44:344

    Article  CAS  PubMed  Google Scholar 

  77. Wallqvist A, Ullner M (1994) A simplified amino acid potential for use in structure predictions of proteins. Proteins 18:267

    Article  CAS  PubMed  Google Scholar 

  78. Yap E, Fawzi N, Head-Gordon T (2008) A coarse-grained alpha-carbon protein model with anisotropic hydrogen-bonding. Proteins 70:626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhou J, Thorpe I, Izvekov S, Voth G (2007) Coarse-grained peptide modeling using a systematic multiscale approach. Biophys J 92:4289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tap Ha-Duong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ha-Duong, T. (2014). Coarse-Grained Models of the Proteins Backbone Conformational Dynamics. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_7

Download citation

Publish with us

Policies and ethics