Skip to main content

Application of Markov State Models to Simulate Long Timescale Dynamics of Biological Macromolecules

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

Conformational changes of proteins are an*Author contributed equally with all other contributors. essential part of many biological processes such as: protein folding, ligand binding, signal transduction, allostery, and enzymatic catalysis. Molecular dynamics (MD) simulations can describe the dynamics of molecules at atomic detail, therefore providing a much higher temporal and spatial resolution than most experimental techniques. Although MD simulations have been widely applied to study protein dynamics, the timescales accessible by conventional MD methods are usually limited to timescales that are orders of magnitude shorter than the conformational changes relevant for most biological functions. During the past decades great effort has been devoted to the development of theoretical methods that may enhance the conformational sampling. In recent years, it has been shown that the statistical mechanics framework provided by discrete-state and -time Markov State Models (MSMs) can predict long timescale dynamics from a pool of short MD simulations. In this chapter we provide the readers an account of the basic theory and selected applications of MSMs. We will first introduce the general concepts behind MSMs, and then describe the existing procedures for the construction of MSMs. This will be followed by the discussions of the challenges of constructing and validating MSMs, Finally, we will employ two biologically-relevant systems, the RNA polymerase and the LAO-protein, to illustrate the application of Markov State Models to elucidate the molecular mechanisms of complex conformational changes at biologically relevant timescales.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parak FG (2003) Proteins in action: the physics of structural fluctuations and conformational changes. Curr Opin Struct Biol 13:552

    Article  CAS  PubMed  Google Scholar 

  2. Reichmann D, Rahat O, Cohen M, Neuvirth H, Schreiber G (2007) The molecular architecture of protein-protein binding sites. Curr Opin Struct Biol 17:67

    Article  CAS  PubMed  Google Scholar 

  3. Mackerell AD Jr, Nilsson L (2008) Molecular dynamics simulations of nucleic acid-protein complexes. Curr Opin Struct Biol 18:194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Warshel A et al (2006) Electrostatic basis for enzyme catalysis. Chem Rev 106:3210

    Article  CAS  PubMed  Google Scholar 

  5. Kendrew JC et al (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662

    Article  CAS  PubMed  Google Scholar 

  6. Frank J et al (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376:441

    Article  CAS  PubMed  Google Scholar 

  7. Svergun DI (1999) Restoring low resolution structure of biological macromolecules from solution scattering using simulated annealing. Biophys J 76:2879

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Wuthrich K (1986) NMR of proteins and nucleic acids. Wiley, New York

    Google Scholar 

  9. Callender R, Dyer RB (2002) Probing protein dynamics using temperature jump relaxation spectroscopy. Curr Opin Struct Biol 12:628

    Article  CAS  PubMed  Google Scholar 

  10. Ha T et al (1999) Single-molecule fluorescence spectroscopy of enzyme conformational dynamics and cleavage mechanism. Proc Natl Acad Sci USA 96:893

    Article  CAS  PubMed  Google Scholar 

  11. Lippincott-Schwartz J, Snapp E, Kenworthy A (2001) Studying protein dynamics in living cells. Nat Rev Mol Cell Biol 2:444

    Article  CAS  PubMed  Google Scholar 

  12. Michalet X, Weiss S, Jager M (2006) Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem Rev 106:1785

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Misteli T (2001) Protein dynamics: implications for nuclear architecture and gene expression. Science 291:843

    Article  CAS  PubMed  Google Scholar 

  14. Levitt M (1983) Protein folding by restrained energy minimization and molecular dynamics. J Mol Biol 170:723

    Article  CAS  PubMed  Google Scholar 

  15. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9:646

    Article  CAS  PubMed  Google Scholar 

  16. Schaller RR (1997) Moore’s law: past, present and future. Spectr IEEE 34:52

    Article  Google Scholar 

  17. Larson SM, Snow CD, Shirts M (2002) Folding@ Home and Genome@ Home: using distributed computing to tackle previously intractable problems in computational biology

    Google Scholar 

  18. Shaw DE et al (2007) Anton, a special-purpose machine for molecular dynamics simulation. SIGARCH Comput Archit News 35:1

    Article  Google Scholar 

  19. Snow CD, Nguyen H, Pande VS, Gruebele M (2002) Absolute comparison of simulated and experimental protein-folding dynamics. Nature 420:102

    Article  CAS  PubMed  Google Scholar 

  20. Voelz VA, Bowman GR, Beauchamp K, Pande VS (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1–39). J Am Chem Soc 132:1526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Schlick T, Barth E, Mandziuk M (1997) Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation. Annu Rev Biophys Biomol Struct 26:181

    Article  CAS  PubMed  Google Scholar 

  22. Beberg AL, Ensign DL, Jayachandran G, Khaliq S, Pande VS (2009) IEEE international symposium on Parallel & Distributed Processing, 2009 (IPDPS 2009), Italy, pp 1–8

    Google Scholar 

  23. Shaw DE et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51:91

    Article  Google Scholar 

  24. Voter AF (1997) A method for accelerating the molecular dynamics simulation of infrequent events. J Chem Phys 106:4665

    Article  CAS  Google Scholar 

  25. Isralewitz B, Gao M, Schulten K (2001) Steered molecular dynamics and mechanical functions of proteins. Curr Opin Struct Biol 11:224

    Article  CAS  PubMed  Google Scholar 

  26. Schlitter J, Engels M, Kruger P (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph 12:84

    Article  CAS  PubMed  Google Scholar 

  27. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120:11919

    Article  CAS  PubMed  Google Scholar 

  28. Voter AF (1997) Hyperdynamics: accelerated molecular dynamics of infrequent events. Phys Rev Lett 78:3908

    Article  CAS  Google Scholar 

  29. Zhou R (2007) Replica exchange molecular dynamics method for protein folding simulation. Methods Mol Biol 350:205

    CAS  PubMed  Google Scholar 

  30. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci USA 99:12562

    Article  CAS  PubMed  Google Scholar 

  31. Chodera JD, Singhal N, Pande VS, Dill KA, Swope WC (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126:155101

    Article  PubMed  Google Scholar 

  32. Noe F (2008) Probability distributions of molecular observables computed from Markov models. J Chem Phys 128:244103

    Article  PubMed  Google Scholar 

  33. Noe F, Fischer S (2008) Transition networks for modeling the kinetics of conformational change in macromolecules. Curr Opin Struct Biol 18:154

    Article  CAS  PubMed  Google Scholar 

  34. Bowman GR, Huang X, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49:197

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Singhal N, Snow CD, Pande VS (2004) Using path sampling to build better Markovian state models: predicting the folding rate and mechanism of a tryptophan zipper beta hairpin. J Chem Phys 121:415

    Article  CAS  PubMed  Google Scholar 

  36. Park S, Pande VS (2006) Validation of Markov state models using Shannon’s entropy. J Chem Phys 124:054118

    Article  PubMed  Google Scholar 

  37. Ensign DL, Kasson PM, Pande VS (2007) Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J Mol Biol 374:806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Bowman GR, Voelz VA, Pande VS (2011) Atomistic folding simulations of the five-helix bundle protein lambda(6–85). J Am Chem Soc 133:664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Bowman GR, Pande VS (2010) Protein folded states are kinetic hubs. Proc Natl Acad Sci USA 107:10890

    Article  CAS  PubMed  Google Scholar 

  40. Huang X et al (2010) Constructing multi-resolution Markov State Models (MSMs) to elucidate RNA hairpin folding mechanisms. Pac Symp Biocomput 15:228

    Google Scholar 

  41. Silva DA, Bowman GR, Sosa-Peinado A, Huang X (2011) A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLoS Comput Biol 7:e1002054

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Da LT, Wang D, Huang X (2012) Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 134:2399

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Da LT, Pardo Avila F, Wang D, Huang X (2013) A two-state model for the dynamics of the pyrophosphate ion release in bacterial RNA polymerase. PLoS Comput Biol 9:e1003020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Noe F, Schutte C, Vanden-Eijnden E, Reich L, Weikl TR (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci USA 106:19011

    Article  CAS  PubMed  Google Scholar 

  45. Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci USA 109:11681

    Article  CAS  PubMed  Google Scholar 

  46. Prinz JH et al (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134:174105

    Article  PubMed  Google Scholar 

  47. Huang X, Bowman GR, Bacallado S, Pande VS (2009) Rapid equilibrium sampling initiated from nonequilibrium data. Proc Natl Acad Sci USA 106:19765

    Article  CAS  PubMed  Google Scholar 

  48. Zhao Y, Sheong FK, Sun J, Sander P, Huang X (2013) A fast parallel clustering algorithm for molecular simulation trajectories. J Comput Chem 34:95

    Article  CAS  PubMed  Google Scholar 

  49. Jain AK (2010) Data clustering: 50 years beyond K-means. Pattern Recognit Lett 31:651

    Article  Google Scholar 

  50. Beauchamp KA et al (2011) MSMBuilder2: modeling conformational dynamics at the picosecond to millisecond scale. J Chem Theory Comput 7:3412

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Bowman GR, Beauchamp KA, Boxer G, Pande VS (2009) Progress and challenges in the automated construction of Markov state models for full protein systems. J Chem Phys 131:124101

    Article  PubMed  Google Scholar 

  52. Yao Y et al (2013) Hierarchical Nystrom methods for constructing Markov state models for conformational dynamics. J Chem Phys 138:174106

    Article  PubMed  Google Scholar 

  53. Bacallado S, Chodera JD, Pande V (2009) Bayesian comparison of Markov models of molecular dynamics with detailed balance constraint. J Chem Phys 131:045106

    Article  PubMed  Google Scholar 

  54. Pande VS, Beauchamp K, Bowman GR (2010) Everything you wanted to know about Markov State Models but were afraid to ask. Methods 52:99

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Beauchamp KA, Ensign DL, Das R, Pande VS (2011) Quantitative comparison of villin headpiece subdomain simulations and triplet-triplet energy transfer experiments. Proc Natl Acad Sci USA 108:12734

    Article  CAS  PubMed  Google Scholar 

  56. Zhuang W, Cui RZ, Silva DA, Huang X (2011) Simulating the T-jump-triggered unfolding dynamics of trpzip2 peptide and its time-resolved IR and two-dimensional IR signals using the Markov state model approach. J Phys Chem 115:5415

    CAS  Google Scholar 

  57. Weinan E, Vanden-Eijnden E (2010) Transition-path theory and path-finding algorithms for the study of rare events. Annu Rev Phys Chem 61:391

    Article  Google Scholar 

  58. Bowman GR, Voelz VA, Pande VS (2011) Taming the complexity of protein folding. Curr Opin Struct Biol 21:4

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Cronkite-Ratcliff B, Pande V (2013) MSMExplorer: visualizing Markov state models for biomolecule folding simulations. Bioinformatics 29:950

    Article  CAS  PubMed  Google Scholar 

  60. Michaud-Agrawal N, Denning EJ, Woolf TB, Beckstein O (2011) MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32:2319–2327

    Article  CAS  Google Scholar 

  61. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33

    Article  CAS  PubMed  Google Scholar 

  62. Lindahl E, Hess B, van der Spoel D (2001) GROMACS 3.0: a package for molecular simulation and trajectory analysis. J Mol Model 7:306

    CAS  Google Scholar 

  63. Hess B, Kutzner C, van der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435

    Article  CAS  Google Scholar 

  64. Kornberg R (2007) The molecular basis of eukaryotic transcription (Nobel Lecture). Angew Chem 46:6956

    Article  CAS  Google Scholar 

  65. Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34:77

    Article  CAS  PubMed  Google Scholar 

  66. Shilatifard A, Conaway RC, Conaway JW (2003) The RNA polymerase II elongation complex. Annu Rev Biochem 72:693

    Article  CAS  PubMed  Google Scholar 

  67. Malinen AM et al (2012) Active site opening and closure control translocation of multisubunit RNA polymerase. Nucleic Acids Res 40:7442

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Abbondanzieri EA, Greenleaf WJ, Shaevitz JW, Landick R, Block SM (2005) Direct observation of base-pair stepping by RNA polymerase. Nature 438:460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Yin YW, Steitz TA (2004) The structural mechanism of translocation and helicase activity in T7 RNA polymerase. Cell 116:393

    Article  CAS  PubMed  Google Scholar 

  70. Wang D, Bushnell DA, Westover KD, Kaplan CD, Kornberg RD (2006) Structural basis of transcription: role of the trigger loop in substrate specificity and catalysis. Cell 127:941

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Vassylyev DG et al (2007) Structural basis for substrate loading in bacterial RNA polymerase. Nature 448:163

    Article  CAS  PubMed  Google Scholar 

  72. Koshland DE (1958) Application of a theory of enzyme specificity to protein synthesis. Proc Natl Acad Sci USA 44:98

    Article  CAS  PubMed  Google Scholar 

  73. Tsai CJ, Kumar S, Ma B, Nussinov R (1999) Folding funnels, binding funnels, and protein function. Protein Sci Publ Protein Soc 8:1181

    Article  CAS  Google Scholar 

  74. Oh BH et al (1993) Three-dimensional structures of the periplasmic lysine/arginine/ornithine-binding protein with and without a ligand. J Biol Chem 268:11348

    CAS  PubMed  Google Scholar 

  75. Hünenberger PH et al (1997) Experimental and theoretical approach to hydrogen-bonded diastereomeric interactions in a model complex. J Am Chem Soc 119:7533

    Article  Google Scholar 

Download references

Acknowledgements

XH acknowledges support from the National Basic Research Program of China (973 Program 2013CB834703), National Science Foundation of China: 21273188, and Hong Kong Research Grants Council GRF 661011 and HKUST2/CRF/10. DAS acknowledges support from the PEW Charitable Trusts as postdoctoral fellow in the Biomedical Sciences. FKS acknowledges support from Hong Kong PhD Fellowship Scheme (2012/13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Da, LT., Sheong, F.K., Silva, DA., Huang, X. (2014). Application of Markov State Models to Simulate Long Timescale Dynamics of Biological Macromolecules. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_2

Download citation

Publish with us

Policies and ethics