Skip to main content

Molecular Dynamics Simulations of F1-ATPase

  • Chapter
  • First Online:
Protein Conformational Dynamics

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

F1-ATPase is a rotary motor enzyme. Despite many theoretical and experimental studies, the molecular mechanism of the motor rotation is still not fully understood. However, plenty of available data provide a clue as to how this molecular motor rotates: with nucleotide perturbations, the catalytically active β subunit propagates its structural changes to the entire α3β3 complex via both sides of the subunits, resulting that asymmetry is created in the α3β3 hexamer ring. In the sequential reaction step, the structure of the asymmetrical α3β3 complex changes from one state to the other due to the nucleotide perturbations, and the γ subunit axis follows the sequentially changing α3β3 structure. Therefore, there are mainly two essential elements for motor rotation: the conformational change of the β subunit and the asymmetrical structure of the α3β3 subunit complex. Therefore, this chapter reports a series of studies focused on these two elements via combinational approaches of molecular dynamics (MD) simulations and experimental or other theoretical studies. In addition to the motor rotation factors, the combined study also revealed other important elements of F1-ATPase, such as torque transmission and the chemical reaction pathway, which is described in the later part of this chapter. All of these results provide insight into the rotational mechanism and deepen the understanding of this molecular motor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Futai M, Kanazawa H (1983) Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev 47:285–312

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Futai M, Noumi T, Maeda M (1989) ATP synthase (H+-ATPase): results by combined biochemical and molecular biological approaches. Annu Rev Biochem 58:111–136

    Article  CAS  PubMed  Google Scholar 

  3. Senior AE (1990) The proton-translocating ATPase of Escherichia coli. Annu Rev Biophys Biophys Chem 19:7–41

    Article  CAS  PubMed  Google Scholar 

  4. Pedersen PL, Amzel LM (1993) ATP synthases. Structure, reaction center, mechanism, and regulation of one of nature’s most unique machines. J Biol Chem 268:9937–9940

    CAS  PubMed  Google Scholar 

  5. Boyer PD (1997) The ATP synthase – a splendid molecular machine. Annu Rev Biochem 66:717–749

    Article  CAS  PubMed  Google Scholar 

  6. Walker JE (1998) ATP synthesis by rotary catalysis (Nobel lecture). Angew Chem Int Ed 37:2308–2319

    Article  CAS  Google Scholar 

  7. Weber J, Senior AE (2000) ATP synthase: what we know about ATP hydrolysis and what we do not know about ATP synthesis. Biochim Biophys Acta 1458:300–309

    Article  CAS  PubMed  Google Scholar 

  8. Kinosita K Jr, Yasuda R, Noji H, Ishiwata S, Yoshida M (1998) F1-ATPase: a rotary motor made of a single molecule. Cell 93:21–24

    Article  CAS  PubMed  Google Scholar 

  9. Gao YQ, Yang W, Karplus M (2005) A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123:195–205

    Article  CAS  PubMed  Google Scholar 

  10. Karplus M, Gao YQ (2004) Biomolecular motors: the F1-ATPase paradigm. Curr Opin Struct Biol 14:250–259

    Article  CAS  PubMed  Google Scholar 

  11. Noji H, Yasuda R, Yoshida M, Kinosita K Jr (1997) Direct observation of the rotation of F1-ATPase. Nature 386:299–302

    Article  CAS  PubMed  Google Scholar 

  12. Kabaleeswaran V, Puri N, Walker JE, Leslie AGW, Mueller DM (2006) Novel features of the rotary catalytic mechanism revealed in the structure of yeast F1-ATPase. EMBO J 25:5433–5442

    Article  CAS  PubMed  Google Scholar 

  13. Itoh H, Takahashi A, Adachi K, Noji H, Yasuda R, Yoshida M, Kinosita K Jr (2004) Mechanically driven ATP synthesis by F1-ATPase. Nature 427:465–468

    Article  CAS  PubMed  Google Scholar 

  14. Rastogi VK, Girvin ME (1999) Structural changes linked to proton translocation by subunit c of the ATP synthase. Nature 402:263–268

    Article  CAS  PubMed  Google Scholar 

  15. Abrahams JP, Leslie AG, Lutter R, Walker JE (1994) Structure at 2.8 Å resolution of F1-ATPase from bovine heart mitochondria. Nature 370:621–628

    Article  CAS  PubMed  Google Scholar 

  16. Yasuda R, Noji H, Kinosita K Jr, Yoshida M (1998) F1-ATPase is a highly efficient motor that rotates with discrete 120-degree steps. Cell 93:1117–1124

    Article  CAS  PubMed  Google Scholar 

  17. Yasuda R, Noji H, Yoshida M, Kinosita K Jr, Itoh H (2001) Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410:898–904

    Article  CAS  PubMed  Google Scholar 

  18. Okuno D, Fujisawa R, Iino R, Hirono-Hara Y, Imamura H, Noji H (2008) Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation. Proc Natl Acad Sci USA 105:20722–20727

    Article  CAS  PubMed  Google Scholar 

  19. Masaike T, Koyama-Horibe F, Oiwa K, Yoshida M, Nishizaka T (2008) Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80° and 40° substep rotations. Nat Struct Mol Biol 15:1326–1333

    Article  CAS  PubMed  Google Scholar 

  20. Shimabukuro K, Yasuda R, Muneyuki E, Hara KY, Kinosita K Jr, Yoshida M (2003) Catalysis and rotation of F1 motor: cleavage of ATP at the catalytic site occurs in 1 ms before 40° substep rotation. Proc Natl Acad Sci USA 100:14731–14736

    Article  CAS  PubMed  Google Scholar 

  21. Adachi K, Oiwa K, Nishizaka T, Furuike S, Noji H, Itoh H, Yoshida M, Kinosita K Jr (2007) Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130:309–321

    Article  CAS  PubMed  Google Scholar 

  22. Ikeguchi M, Ueno J, Sato M, Kidera A (2005) Protein structural change upon ligand binding: linear response theory. Phys Rev Lett 94:078102

    Article  PubMed  Google Scholar 

  23. Verma CS, Caves LS, Hubbard RE, Roberts GCK (1997) Domain motions in dihydrofolate reductase: a molecular dynamics study. J Mol Biol 266:776–796

    Article  CAS  PubMed  Google Scholar 

  24. Radkiewicz JL, Brooks CL III (2000) Protein dynamics in enzymatic catalysis: exploration of dihydrofolate reductase. J Am Chem Soc 122:225–231

    Article  CAS  Google Scholar 

  25. Rod TH, Radkiewicz JL, Brooks CL III (2003) Correlated motion and the effect of distal mutations in dihydrofolate reductase. Proc Natl Acad Sci USA 100:6980–6985

    Article  CAS  PubMed  Google Scholar 

  26. Thorpe IF, Brooks CL III (2004) The coupling of structural fluctuations to hydride transfer in dihydrofolate reductase. Proteins 57:444–457

    Article  CAS  PubMed  Google Scholar 

  27. Ito Y, Ikeguchi M (2010) Molecular dynamics simulations of the isolated β subunit of F1-ATPase. Chem Phys Lett 490:80–83

    Article  CAS  Google Scholar 

  28. Böckmann RA, Grubmüller H (2003) Conformational dynamics of the F1-ATPase β-subunit: a molecular dynamics study. Biophys J 85:1482–1491

    Article  PubMed Central  PubMed  Google Scholar 

  29. Yagi H, Tsujimoto T, Yamazaki T, Yoshida M, Akutsu H (2004) Conformational change of H+-ATPase β monomer revealed on segmental isotope labeling NMR spectroscopy. J Am Chem Soc 126:16632–16638

    Article  CAS  PubMed  Google Scholar 

  30. Shirakihara Y, Leslie AG, Abrahams JP, Walker JE, Ueda T, Sekimoto Y, Kambara M, Saika K, Kagawa Y, Yoshida M (1997) The crystal structure of the nucleotide-free α3β3 subcomplex of F1-ATPase from the thermophilic Bacillus PS3 is a symmetric trimer. Structure 5:825–836

    Article  CAS  PubMed  Google Scholar 

  31. Gibbons C, Montgomery MG, Leslie AG, Walker JE (2000) The structure of the central stalk in bovine F1-ATPase at 2.4 Å resolution. Nat Struct Biol 7:1055–1061

    Article  CAS  PubMed  Google Scholar 

  32. Yagi H, Kajiwara N, Iwabuchi T, Izumi K, Yoshida M, Akutsu H (2009) Stepwise propagation of the ATP-induced conformational change of the F1-ATPase β subunit revealed by NMR. J Biol Chem 284:2374–2382

    Article  CAS  PubMed  Google Scholar 

  33. Ito Y, Oroguchi T, Ikeguchi M (2011) Mechanism of the conformational change of the F1-ATPase β subunit revealed by free-energy simulations. J Am Chem Soc 133:3372–3380

    Article  CAS  PubMed  Google Scholar 

  34. Ma J, Flynn TC, Cui Q, Leslie AG, Walker JE, Karplus M (2002) A dynamic analysis of the rotation mechanism for conformational change in F1-ATPase. Structure 10:921–931

    Article  CAS  PubMed  Google Scholar 

  35. Böckmann R, Grubmüller H (2002) Nanoseconds molecular dynamics simulation of primary mechanical energy transfer steps in F1-ATP synthase. Nat Struct Biol 9:198–202

    PubMed  Google Scholar 

  36. Arora K, Brooks CL III (2007) Large-scale allosteric conformational transitions of adenylate kinase appear to involve a population-shift mechanism. Proc Natl Acad Sci USA 104:18496–18501

    Article  CAS  PubMed  Google Scholar 

  37. Arora K, Brooks CL III (2009) Functionally important conformations of the Met20 loop in dihydrofolate reductase are populated by rapid thermal fluctuations. J Am Chem Soc 131:5642–5647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Jonsson H, Mills G, Jacobsen KW (1998) Nudged elastic band method for finding minimum energy paths of transitions. In: Berne BJ, Cicotti G, Coker DF (eds) Classical and quantum dynamics in condensed phase simulations. World Scientific, Rivers Edge, pp 385–404

    Chapter  Google Scholar 

  39. Chu JW, Trout BL, Brooks BR (2003) A super-linear minimization scheme for the nudged elastic band method. J Chem Phys 119:12708–12717

    Article  CAS  Google Scholar 

  40. Torrie GM, Valleau JP (1974) Monte Carlo free energy estimates using non-Boltzmann sampling: application to the sub-critical Lennard-Jones fluid. Chem Phys Lett 28:578–581

    Article  CAS  Google Scholar 

  41. Kirkwood JG (1935) Statistical mechanics of fluid mixtures. J Chem Phys 3:300–313

    Article  CAS  Google Scholar 

  42. Weinan E, Ren W, Vanden-Eijnden E (2002) String method for the study of rare events. Phys Rev B 66:052301–052304

    Article  Google Scholar 

  43. Weinan E, Ren W, Vanden-Eijnden E (2007) Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J Chem Phys 126:164103–164108

    Article  Google Scholar 

  44. Weinan E, Ren W, Vanden-Eijnden E (2005) Finite temperature string method for the study of rare events. J Phys Chem B 109:6688–6693

    Article  Google Scholar 

  45. Vanden-Eijnden E, Venturoli M (2009) Revisiting the finite temperature string method for the calculation of reaction tubes and free energies. J Chem Phys 130:194103–194117

    Article  PubMed  Google Scholar 

  46. Maragliano L, Fischer A, Vanden-Eijnden E, Ciccotti G (2006) String method in collective variables: minimum free energy paths and isocommittor surfaces. J Chem Phys 125:024106–024115

    Article  Google Scholar 

  47. Maragliano L, Vanden-Eijnden E (2007) On-the-fly string method for minimum free energy paths calculation. Chem Phys Lett 446:182–190

    Article  CAS  Google Scholar 

  48. Pan AC, Sezer D, Roux B (2008) Finding transition pathways using the string method with swarms of trajectories. J Phys Chem B 112:3432–3440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Gan W, Yang S, Roux B (2009) Atomistic view of the conformational activation of Src kinase using the string method with swarms-of-trajectories. Biophys J 97:L8–L10

    Article  PubMed Central  PubMed  Google Scholar 

  50. Dellago C, Bolhuis PG, Geissler PL (2002) Transition path sampling. Adv Chem Phys 123:1–78

    CAS  Google Scholar 

  51. Dellago C, Bolhuis PG (2007) Transition path sampling simulations of biological systems. Top Curr Chem 268:291–317

    Article  CAS  Google Scholar 

  52. Hagan MF, Dinner AR, Chandler D, Chakraborty AK (2003) Atomistic understanding of kinetic pathways for single base-pair binding and unbinding in DNA. Proc Natl Acad Sci USA 100:13922–13927

    Article  CAS  PubMed  Google Scholar 

  53. Juraszek J, Bolhuis PG (2006) Sampling multiple folding pathways of Trp-cage mini-protein in explicit solvent. Proc Natl Acad Sci USA 103:15859–15864

    Article  CAS  PubMed  Google Scholar 

  54. Radhakrishnan R, Schlick T (2004) Orchestration of cooperative events in DNA synthesis and repair mechanism unraveled by transition path sampling of DNA polymerase β’s closing. Proc Natl Acad Sci USA 101:5970–5975

    Article  CAS  PubMed  Google Scholar 

  55. Martí J, Csajka FS (2004) Transition path sampling study of flip-flop transitions in model lipid bilayer membranes. Phys Rev E 69:061918

    Article  Google Scholar 

  56. Quaytman SL, Schwartz SD (2007) The reaction coordinate of an enzymatic reaction: TPS studies of lactate dehydrogenase. Proc Natl Acad Sci USA 104:12253–12258

    Article  CAS  PubMed  Google Scholar 

  57. Banavali NK, Roux B (2005) Free energy landscape of a-DNA to B-DNA conversion in aqueous solution. J Am Chem Soc 127:6866–6876

    Article  CAS  PubMed  Google Scholar 

  58. Banavali NK, Roux B (2005) The N-terminal end of the catalytic domain of Src kinase Hck is a conformational switch implicated in long-range allosteric regulation. Structure 13:1715–1723

    Article  CAS  PubMed  Google Scholar 

  59. Amano T, Tozawa K, Yoshida M, Murakami H (1994) Spatial precision of a catalytic carboxylate of F1-ATPase β subunit probed by introducing different carboxylate-containing side chains. FEBS Lett 348:93–98

    Article  CAS  PubMed  Google Scholar 

  60. Löbau S, Weber J, Wilke-Mounts S, Senior AE (1997) F1-ATPase: roles of three catalytic site residues. J Biol Chem 272:3648–3656

    Article  PubMed  Google Scholar 

  61. Ariga T, Muneyuki E, Yoshida M (2007) F1-ATPase rotates by an asymmetric, sequential mechanism using all three catalytic subunits. Nat Struct Mol Biol 14:841–846

    Article  CAS  PubMed  Google Scholar 

  62. Nadanaciva S, Weber J, Senior AE (1999) The role of β-Arg-182, an essential catalytic site residue in Escherichia coli F1-ATPase. Biochemistry 38:7670–7677

    Article  CAS  PubMed  Google Scholar 

  63. Dittrich M, Hayashi S, Schulten K (2004) ATP hydrolysis in the βTP and βDP catalytic sites of F1-ATPase. Biophys J 87:2954–2967

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Ahmad Z, Senior AE (2004) Mutagenesis of residue β-Arg-246 in the phosphate-binding subdomain of catalytic sites of Escherichia coli F1-ATPase. J Biol Chem 279:31505–31513

    Article  CAS  PubMed  Google Scholar 

  65. Masaike T, Mitome N, Noji H, Muneyuki E, Yasuda R, Kinosita K Jr, Yoshida M (2000) Rotation of F1-ATPase and the hinge residues of the β subunit. J Exp Biol 203:1–8

    CAS  PubMed  Google Scholar 

  66. Yoshidome T, Kinoshita M, Hirota S, Baden N, Terazima M (2008) Thermodynamics of apoplastocyanin folding: comparison between experimental and theoretical results. J Chem Phys 128:225104(1–9)

    Article  Google Scholar 

  67. Kauzmann W (1959) Some factors in the interpretation of protein denaturation. Adv Protein Chem 14:1–63

    Article  CAS  PubMed  Google Scholar 

  68. Gerstman BS, Chapagain PP (2005) Self-organization in protein folding and the hydrophobic interaction. J Chem Phys 123:054901(1–6)

    Article  Google Scholar 

  69. Watanabe R, Iino R, Shimabukuro K, Yoshida M, Noji H (2008) Temperature-sensitive reaction intermediate of F1-ATPase. EMBO Rep 9:84–90

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Boyer PD (1993) The binding change mechanism for ATP synthase–some probabilities and possibilities. Biochim Biophys Acta 1140:215–250

    Article  CAS  PubMed  Google Scholar 

  71. Koga N, Takada S (2006) Folding-based molecular simulations reveal mechanisms of the rotary motor F1-ATPase. Proc Natl Acad Sci USA 103:5367–5372

    Article  CAS  PubMed  Google Scholar 

  72. Pu J, Karplus M (2008) How subunit coupling produces the γ-subunit rotary motion in F1-ATPase. Proc Natl Acad Sci USA 105:1192–1197

    Article  CAS  PubMed  Google Scholar 

  73. Cui Q, Li GH, Ma JP, Karplus M (2004) A normal mode analysis of structural plasticity in the biomolecular motor F1-ATPase. J Mol Biol 340:345–372

    Article  CAS  PubMed  Google Scholar 

  74. Czub J, Grubmüller H (2011) Torsional elasticity and energetics of F1-ATPase. Proc Natl Acad Sci USA 108:7408–7413

    Article  PubMed  Google Scholar 

  75. Okazaki K, Takada S (2011) Structural comparison of F1-ATPase: interplay among enzyme structures, catalysis, and rotations. Structure 19:588–598

    Article  CAS  PubMed  Google Scholar 

  76. Ito Y, Ikeguchi M (2010) Structural fluctuation and concerted motions in F1-ATPase: a molecular dynamics study. J Comput Chem 31:2175–2185

    Article  CAS  PubMed  Google Scholar 

  77. Yoshidome T, Ito Y, Ikeguchi M, Kinoshita M (2011) On the rotation mechanism of F1-ATPase: crucial importance of water-entropy effect. J Am Chem Soc 133:4030–4039

    Article  CAS  PubMed  Google Scholar 

  78. Bowler MW, Montgomery MG, Leslie AGW, Walker JE (2007) Ground state structure of F1-ATPase from bovine heart mitochondria at 1.9 Å resolution. J Biol Chem 282:14238–14242

    Article  CAS  PubMed  Google Scholar 

  79. Oroguchi T, Hashimoto H, Shimizu T, Sato M, Ikeguchi M (2009) Intrinsic dynamics of restriction endonuclease EcoO109I studied by molecular dynamics simulations and X-ray scattering data analysis. Biophys J 96:2808–2822

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Furuike S, Hossain MD, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K Jr (2008) Axle-less F1-ATPase rotates in the correct direction. Science 319:955–958

    Article  CAS  PubMed  Google Scholar 

  81. Hossain MD, Furuike S, Maki Y, Adachi K, Suzuki T, Kohori A, Itoh H, Yoshida M, Kinosita K Jr (2008) Neither helix in the coiled coil region of the axle of F1-ATPase plays a significant role in torque production. Biophys J 95:4837–4844

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Uchihashi T, Iino R, Ando T, Noji H (2011) High-speed atomic force microscopy reveals rotary catalysis of rotorless F1-ATPase. Science 333:755–758

    Article  CAS  PubMed  Google Scholar 

  83. Ito Y, Yoshidome T, Matubayasi N, Kinoshita M, Ikeguchi M (2013) Molecular dynamics simulations of yeast F1-ATPase before and after 16° rotation of the γ subunit. J Phys Chem B 117:3298–3307

    Article  CAS  PubMed  Google Scholar 

  84. Yoshidome T, Ito Y, Matubayasi N, Ikeguchi M, Kinoshita M (2012) Structural characteristics of yeast F1-ATPase before and after 16-degree rotation of the γ subunit: theoretical analysis focused on the water-entropy effect. J Chem Phys 137:035102(1–8)

    Article  Google Scholar 

  85. Watanabe R, Iino R, Noji H (2010) Phosphate release in F1-ATPase catalytic cycle follows ADP release. Nat Chem Biol 6:814–820

    Article  CAS  PubMed  Google Scholar 

  86. Watanabe R, Okuno D, Sakakihara S, Shimabukuro K, Iino R, Yoshida M, Noji H (2012) Mechanical modulation of catalytic power on F1-ATPase. Nat Chem Biol 8:86–92

    Article  CAS  Google Scholar 

  87. Tanigawara M, Tabata KV, Ito Y, Ito J, Watanabe R, Ueno H, Ikeguchi M, Noji H (2012) Role of the DELSEED loop in torque transmission of F1-ATPase. Biophys J 103:970–978

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Beke-Somfai T, Lincoln P, Nordén B (2011) Double-lock ratchet mechanism revealing the role of αSER-344 in FoF1 ATP synthase. Proc Natl Acad Sci USA 108:4828–4833

    Article  CAS  PubMed  Google Scholar 

  89. Dittrich M, Hayashi S, Schulten K (2003) On the mechanism of ATP hydrolysis in F1-ATPase. Biophys J 85:2253–2266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Yang W, Gao YQ, Cui Q, Ma J, Karplus M (2003) The missing link between thermodynamics and structure in F1-ATPase. Proc Natl Acad Sci USA 100:874–879

    Article  CAS  PubMed  Google Scholar 

  91. Gao YQ, Yang W, Marcus RA, Karplus M (2003) A model for the cooperative free energy transduction and kinetics of ATP hydrolysis by F1-ATPase. Proc Natl Acad Sci USA 100:11339–11344

    Article  CAS  PubMed  Google Scholar 

  92. Hayashi S, Ueno H, Shaikh AR, Umemura M, Kamiya M, Ito Y, Ikeguchi M, Komoriya Y, Iino R, Noji H (2012) Molecular mechanism of ATP hydrolysis in F1-ATPase revealed by molecular simulations and single-molecule observations. J Am Chem Soc 134:8447–8454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to all of our collaborators for their cooperation and helpful discussions. This work was supported by the following: a Grant-in-Aid for the Japan Society for the Promotion of Science (JSPS) fellows; Grants-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT); Grants-in-Aid for Scientific Research (B); the Grand Challenges in Next-Generation Integrated Simulation of Living Matter, a part of the Development and Use of the Next-Generation Supercomputer Project of MEXT; the Platform for Drug Design, Informatics and Structural Life Sciences (MEXT); and the X-ray Free Electron Laser Priority Strategy Program (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuko Ito or Mitsunori Ikeguchi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ito, Y., Ikeguchi, M. (2014). Molecular Dynamics Simulations of F1-ATPase. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_17

Download citation

Publish with us

Policies and ethics