Skip to main content

Multi-state Targeting Machinery Govern the Fidelity and Efficiency of Protein Localization

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 805))

Abstract

Proper localization of newly synthesized proteins is essential to cellular function. Among different protein localization modes, the signal recognition particle (SRP) and SRP receptor (SR) constitute the conserved targeting machinery in all three life kingdoms and mediate about one third of the protein targeting reactions. Based on experimental and computational studies, a detailed molecular model is proposed to explain how this molecular machinery governs the efficiency and fidelity of protein localizations. In this targeting machinery, two distinct SRP GTPases are contained into the SRP and SR that are responsible to the interactions between SRP and SR. These two GTPases can interact with one another through a series of sequential and discrete interaction states that are the early intermediate formation, stable complex association, and GTPase activation. In contrast to canonical GTPases, a floppy and open conformation adopted in free SRP GTPases can facilitate efficient GTP/GDP exchange without the aid of any external factors. As the apo-form free SRP GTPases can adopt the conformational states of GDP- or GTP-bound form, the binding of GTP/GDP follows a mechanism of conformational selection. In the first step of complex formation, the two SRP GTPases can rapidly assemble into an unstable early intermediate by selecting and stabilizing one another’s primed states from the equilibrium conformational ensemble. Subsequently, extensive inter- and intra-domain changes rearrange the early complex into a tight and closed state of stable complex through induced fit mechanism. Upon stable complex association, further tune of several important interaction networks activates the SRP GTPase for GTP hydrolysis. These different conformational states are coupled to corresponding protein targeting events, in which the complex formation deliveries the translating ribosome to the target membrane and the GTPase activation couples to the cargo release from SRP-SR machinery to the translocation channel. It is thus suggested that the SRP GTPases constitute a self-sufficient system to execute exquisite spatial and temporal control of the complex targeting process. The working mechanism of the SRP and SR provides a novel paradigm of how the protein machinery functions in controlling diverse biological processes efficiently and faithfully.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cpSRP:

chloroplast SRP

cpSR:

chloroplast SR

Ffh:

SRP54 homologous protein in bacteria and archaea

FtsY:

SRα homologous protein in bacteria and archera

GDP:

guanosine diphosphate

GTP:

guanosine triphosphate

IBD:

insertion box domain

RNC:

ribosome nascent chain complex

SRP:

signal recognition particle

SR:

SRP receptor

T.aq.:

Thermus aquaticus

References

  1. Tokuriki N, Tawfik DS (2009) Protein dynamism and evolvability. Science 324(5924):203–207

    CAS  PubMed  Google Scholar 

  2. James LC, Tawfik DS (2003) Conformational diversity and protein evolution – a 60-year-old hypothesis revisited. Trends Biochem Sci 28(7):361–368

    CAS  PubMed  Google Scholar 

  3. Henzler-Wildman K, Kern D (2007) Dynamic personalities of proteins. Nature 450:964–972

    CAS  PubMed  Google Scholar 

  4. Austin RH, Beeson KW, Eisenstein L, Frauenfelder H, Gunsalus IC (1975) Dynamics of ligand-binding to myoglobin. Biochemistry 14(24):5355–5373

    CAS  PubMed  Google Scholar 

  5. Spence JCH, Weierstall U, Chapman HN (2012) X-ray lasers for structural and dynamic biology. Rep Prog Phys 75(10):102601

    CAS  PubMed  Google Scholar 

  6. Kay LE (2005) NMR studies of protein structure and dynamics. J Magn Reson 173(2):193–207

    CAS  PubMed  Google Scholar 

  7. Ishima R, Torchia DA (2000) Protein dynamics from NMR. Nat Struct Biol 7(9):740–743

    CAS  PubMed  Google Scholar 

  8. Neutze R, Moffat K (2012) Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. Curr Opin Struct Biol 22(5):651–659

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Aquila A, Hunter MS, Doak RB, Kirian RA, Fromme P, White TA, Andreasson J, Arnlund D, Bajt S, Barends TRM, Barthelmess M, Bogan MJ, Bostedt C, Bottin H, Bozek JD, Caleman C, Coppola N, Davidsson J, DePonte DP, Elser V, Epp SW, Erk B, Fleckenstein H, Foucar L, Frank M, Fromme R, Graafsma H, Grotjohann I, Gumprecht L, Hajdu J, Hampton CY, Hartmann A, Hartmann R, Hauriege S, Hauser G, Hirsemann H, Holl P, Holton JM, Hoemke A, Johansson L, Kimmel N, Kassemeyer S, Krasniqi F, Kuehnel K, Liang M, Lomb L, Malmerberg E, Marchesini S, Martin AV, Maia FRNC, Messerschmidt M, Nass K, Reich C, Neutze R, Rolles D, Rudek B, Rudenko A, Schlichting I, Schmidt C, Schmidt KE, Schulz J, Seibert MM, Shoeman RL, Sierra R, Soltau H, Starodub D, Stellato F, Stern S, Strueder L, Timneanu N, Ullrich J, Wang X, Williams GJ, Weidenspointner G, Weierstall U, Wunderer C, Barty A, Spence JCH, Chapman HN (2012) Time-resolved protein nanocrystallography using an X-ray free-electron laser. Opt Express 20(3):2706–2716

    CAS  PubMed  Google Scholar 

  10. Elmlund H, Baraznenok V, Linder T, Szilagyi Z, Rofougaran R, Hofer A, Hebert H, Lindahl M, Gustafsson CM (2009) Cryo-EM reveals promoter DNA binding and conformational flexibility of the general transcription factor TFIID. Structure 17(11):1442–1452

    CAS  PubMed  Google Scholar 

  11. Heymann JB, Conway JF, Steven AC (2004) Molecular dynamics of protein complexes from four-dimensional cryo-electron microscopy. J Struct Biol 147(3):291–301

    CAS  PubMed  Google Scholar 

  12. Torres T, Levitus M (2007) Measuring conformational dynamics: a new FCS-FRET approach. J Phys Chem B 111(25):7392–7400

    CAS  PubMed  Google Scholar 

  13. Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7(9):724–729

    CAS  PubMed  Google Scholar 

  14. Weiss S (1999) Fluorescence spectroscopy of single biomolecules. Science 283(5408):1676–1683

    CAS  PubMed  Google Scholar 

  15. Barth A (2007) Infrared spectroscopy of proteins. Biochim Biophys Acta Bioenerg 1767(9):1073–1101

    CAS  Google Scholar 

  16. Gabel F, Bicout D, Lehnert U, Tehei M, Weik M, Zaccai G (2002) Protein dynamics studied by neutron scattering. Q Rev Biophys 35(4):327–367

    CAS  PubMed  Google Scholar 

  17. Yang WT, Lee TS (1995) A density-matrix divide-and-conquer approach for electronic-structure calculations of large molecules. J Chem Phys 103(13):5674–5678

    CAS  Google Scholar 

  18. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313(3–4):701–706

    CAS  Google Scholar 

  19. Nakano T, Kaminuma T, Sato T, Akiyama Y, Uebayasi M, Kitaura K (2000) Fragment molecular orbital method: application to polypeptides. Chem Phys Lett 318(6):614–618

    CAS  Google Scholar 

  20. Zhang DW, Zhang JZH (2003) Molecular fractionation with conjugate caps for full quantum mechanical calculation of protein-molecule interaction energy. J Chem Phys 119(7):3599–3605

    CAS  Google Scholar 

  21. Xie W, Gao J (2007) Design of a next generation force field: the X-Pol potential. J Chem Theory Comput 3(6):1890–1900

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Hu H, Yang W (2008) Free energies of chemical reactions in solution and in enzymes with Ab initio quantum mechanics/molecular mechanics methods. Annu Rev Phys Chem 59:573–601

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Song L, Han J, Lin YL, Xie W, Gao J (2009) Explicit polarization (X-Pol) potential using Ab initio molecular orbital theory and density functional theory. J Phys Chem A 113(43):11656–11664

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber Ff99sb protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958

    CAS  Google Scholar 

  25. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616

    CAS  Google Scholar 

  26. Takada S (2012) Coarse-grained molecular simulations of large biomolecules. Curr Opin Struct Biol 22(2):130–137

    CAS  PubMed  Google Scholar 

  27. Zhang Z, Pfaendtner J, Grafmueller A, Voth GA (2009) Defining coarse-grained representations of large biomolecules and biomolecular complexes from elastic network models. Biophys J 97(8):2327–2337

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Yang L, Shao Q, Gao Y (2012) Enhanced sampling method in molecular simulations. Prog Chem 24(6):1199–1213

    CAS  Google Scholar 

  29. Hu Y, Hong W, Shi Y, Liu H (2012) Temperature-accelerated sampling and amplified collective motion with adiabatic reweighting to obtain canonical distributions and ensemble averages. J Chem Theory Comput 8(10):3777–3792

    CAS  Google Scholar 

  30. Kaestner J (2011) Umbrella sampling. Wiley Interdiscip Rev Comput Mol Sci 1(6):932–942

    CAS  Google Scholar 

  31. Fiore CE, da Luz MGE (2010) Comparing parallel- and simulated-tempering-enhanced sampling algorithms at phase-transition regimes. Phys Rev E 82(3):031104-1–031104-11

    Google Scholar 

  32. Markwick PRL, McCammon JA (2011) Studying functional dynamics in bio-molecules using accelerated molecular dynamics. Phys Chem Chem Phys 13(45):20053–20065

    CAS  PubMed  Google Scholar 

  33. Haider S, Parkinson GN, Neidle S (2008) Molecular dynamics and principal components analysis of human telomeric quadruplex multimers. Biophys J 95(1):296–311

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Chodera JD, Swope WC, Pitera JW, Seok C, Dill KA (2007) Use of the weighted histogram analysis method for the analysis of simulated and parallel tempering simulations. J Chem Theory Comput 3(1):26–41

    CAS  Google Scholar 

  35. Chan KY, Trabuco LG, Schreiner E, Schulten K (2012) Cryo-electron microscopy modeling by the molecular dynamics flexible fitting method. Biopolymers 97(9):678–686

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Zheng W, Tekpinar M (2011) Accurate flexible fitting of high-resolution protein structures to small-angle X-ray scattering data using a coarse-grained model with implicit hydration shell. Biophys J 101(12):2981–2991

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Torbeev VY, Raghuraman H, Hamelberg D, Tonelli M, Westler WM, Perozo E, Kent SBH (2011) Protein conformational dynamics in the mechanism of HIV-1 protease catalysis. Proc Natl Acad Sci USA 108(52):20982–20987

    CAS  PubMed  Google Scholar 

  38. Zhuang W, Sgourakis NG, Li Z, Garcia AE, Mukamel S (2010) Discriminating early stage a beta 42 monomer structures using chirality-induced 2DIR spectroscopy in a simulation study. Proc Natl Acad Sci USA 107(36):15687–15692

    CAS  PubMed  Google Scholar 

  39. Zhang B, Miller TF III (2010) Hydrophobically stabilized open state for the lateral gate of the Sec translocon. Proc Natl Acad Sci USA 107(12):5399–5404

    CAS  PubMed  Google Scholar 

  40. Silva JR, Pan H, Wu D, Nekouzadeh A, Decker KF, Cui J, Baker NA, Sept D, Rudy Y (2009) A multiscale model linking ion-channel molecular dynamics and electrostatics to the cardiac action potential. Proc Natl Acad Sci USA 106(27):11102–11106

    CAS  PubMed  Google Scholar 

  41. Nussinov R, Ma B (2012) Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol 10:2

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5(11):789–796

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Saraogi I, Shan SO (2011) Molecular mechanism of co-translational protein targeting by the signal recognition particle. Traffic 12(5):535–542

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Pool MR (2005) Signal recognition particles in chloroplasts, bacteria, yeast and mammals (review). Mol Membr Biol 22(1–2):3–15

    CAS  PubMed  Google Scholar 

  45. Park E, Rapoport TA (2012) Mechanisms of Sec61/SecY-mediated protein translocation across membranes. In: Rees DC (ed) Annual review of biophysics, vol 41, Annual Rieviews, Palo Alto California, pp 21–40

    Google Scholar 

  46. Cheng ZL (2010) Protein translocation through the Sec61/SecY channel. Biosci Rep 30(3):201–207

    CAS  PubMed  Google Scholar 

  47. Driessen AJM, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    CAS  PubMed  Google Scholar 

  48. Traeger C, Rosenblad MA, Ziehe D, Garcia-Petit C, Schrader L, Kock K, Richter CV, Klinkert B, Narberhaus F, Herrmann C, Hofmann E, Aronsson H, Schuenemann D (2012) Evolution from the prokaryotic to the higher plant chloroplast signal recognition particle: the signal recognition particle RNA is conserved in plastids of a wide range of photosynthetic organisms. Plant Cell 24(12):4819–4836

    CAS  Google Scholar 

  49. Richter CV, Bals T, Schunemann D (2010) Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport. Eur J Cell Biol 89(12):965–973

    CAS  PubMed  Google Scholar 

  50. Rosenblad MA, Gorodkin J, Knudsen B, Zwieb C, Samuelsson T (2003) SRPDB: signal recognition particle database. Nucleic Acids Res 31(1):363–364

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Rapoport TA (2007) Protein translocation across the eukaryotic endoplasmic reticulum and bacterial plasma membranes. Nature 450(7170):663–669

    CAS  PubMed  Google Scholar 

  52. Zwieb C, Van Nues RW, Rosenblad MA, Brown JD, Samuelsson T (2005) A nomenclature for all signal recognition particle RNAs. RNA-A Publ RNA Soc 11(1):7–13

    CAS  Google Scholar 

  53. Zhang DW, Shan SO (2012) Translation elongation regulates substrate selection by the signal recognition particle. J Biol Chem 287(10):7652–7660

    CAS  PubMed  Google Scholar 

  54. Halic M, Becker T, Pool MR, Spahn CMT, Grassucci RA, Frank J, Beckmann R (2004) Structure of the signal recognition particle interacting with the elongation-arrested ribosome. Nature 427(6977):808–814

    CAS  PubMed  Google Scholar 

  55. Calo D, Eichler J (2011) Crossing the membrane in archaea, the third domain of life. Biochim Biophys Acta Biomembr 1808(3):885–891

    CAS  Google Scholar 

  56. Dalbey RE, Kuhn A (2012) Protein traffic in gram-negative bacteria – how exported and secreted proteins find their way. Fems Microbiol Rev 36(6):1023–1045

    CAS  PubMed  Google Scholar 

  57. Verstraeten N, Fauvart M, Versees W, Michiels J (2011) The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 75(3):507–542

    CAS  PubMed Central  PubMed  Google Scholar 

  58. von Loeffelholz O, Knoops K, Ariosa A, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO, Schaffitzel C (2013) Structural basis of signal sequence surveillance and selection by the SRP–FTSY complex. Nat Struct Mol Biol 5:604–610

    Google Scholar 

  59. Hainzl T, Huang SH, Merilainen G, Brannstrom K, Sauer-Eriksson AE (2011) Structural basis of signal-sequence recognition by the signal recognition particle. Nat Struct Mol Biol 18(3):389–391

    CAS  PubMed  Google Scholar 

  60. Focia PJ, Shepotinovskaya IV, Seidler JA, Freymann DM (2004) Heterodimeric GTPase core of the SRP targeting complex. Science 303(5656):373–377

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Egea PF, Shan SO, Napetschnig J, Savage DF, Walter P, Stroud RM (2004) Substrate twinning activates the signal recognition particle and its receptor. Nature 427(6971):215–221

    CAS  PubMed  Google Scholar 

  62. Montoya G, Svensson C, Luirink J, Sinning I (1997) Crystal structure of the NG domain from the signal-recognition particle receptor FtsY. Nature 385(6614):365–368

    CAS  PubMed  Google Scholar 

  63. Freymann DM, Keenan RJ, Stroud RM, Walter P (1997) Structure of the conserved GTPase domain of the signal recognition particle. Nature 385(6614):361–364

    CAS  PubMed  Google Scholar 

  64. Hainzl T, Huang SH, Sauer-Eriksson AE (2007) Interaction of signal-recognition particle 54 GTPase domain and signal-recognition particle RNA in the free signal-recognition particle. Proc Natl Acad Sci USA 104:14911–14916

    CAS  PubMed  Google Scholar 

  65. Rosendal KR, Wild K, Montoya G, Sinning L (2003) Crystal structure of the complete core of archaeal signal recognition particle and implications for interdomain communication. Proc Natl Acad Sci USA 100(25):14701–14706

    CAS  PubMed  Google Scholar 

  66. Batey RT, Rambo RP, Lucast L, Rha B, Doudna JA (2000) Crystal structure of the ribonucleoprotein core of the signal recognition particle. Science 287(5456):1232–1239

    CAS  PubMed  Google Scholar 

  67. Neher SB, Bradshaw N, Floor SN, Gross JD, Walter P (2008) SRP RNA controls a conformational switch regulating the SRP-SRP receptor interaction. Nat Struct Mol Biol 15(9):916–923

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Siu FY, Spanggord RJ, Doudna JA (2007) SRP RNA provides the physiologically essential GTPase activation function in cotranslational protein targeting. RNA-A Publ RNA Soc 13(2):240–250

    CAS  Google Scholar 

  69. Zhang X, Lam VQ, Mou Y, Kimura T, Chung J, Chandrasekar S, Winkler JR, Mayo SL, Shan SO (2011) Direct visualization reveals dynamics of a transient intermediate during protein assembly. Proc Natl Acad Sci USA 108(16):6450–6455

    CAS  PubMed  Google Scholar 

  70. Shen K, Arslan S, Akopian D, Ha T, Shan SO (2012) Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 492(7428):271–275

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Shan SO, Walter P (2005) Co-translational protein targeting by the signal recognition particle. FEBS Lett 579(4):921–926

    CAS  PubMed  Google Scholar 

  72. Jagath JR, Rodnina MV, Lentzen G, Wintermeyer W (1998) Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli. Biochemistry 37(44):15408–15413

    CAS  PubMed  Google Scholar 

  73. Peluso P, Shan SO, Nock S, Herschlag D, Walter P (2001) Role of SRP RNA in the GTPase cycles of Ffh and FtsY. Biochemistry 40(50):15224–15233

    CAS  PubMed  Google Scholar 

  74. Padmanabhan S, Freymann DM (2001) The conformation of bound GMPPNP suggests a mechanism for gating the active site of the SRP GTPase. Structure 9(9):859–867

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Ramirez UD, Minasov G, Focia PJ, Stroud RM, Walter P, Kuhn P, Freymann DM (2002) Structural basis for mobility in the 1.1 Angstrom crystal structure of the NG domain of Thermus aquaticus Ffh. J Mol Biol 320(4):783–799

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Gawronski-Salerno J, Coon JSV, Focia PJ, Freymann DM (2007) X-ray structure of the T-aquaticus FtsY: GDP complex suggests functional roles for the C-terminal helix of the SRP GTPases. Proteins Struct Funct Bioinform 66(4):984–995

    CAS  Google Scholar 

  77. Reyes CL, Rutenber E, Walter P, Stroud RM (2007) X-ray structures of the signal recognition particle receptor reveal targeting cycle intermediates. PLoS One 2(7):e607

    PubMed Central  PubMed  Google Scholar 

  78. Ramirez UD, Focia PJ, Freymann DM (2008) Nucleotide-binding flexibility in ultrahigh-resolution structures of the SRP GTPase Ffh. Acta Crystallogr Sect D Biol Crystallogr 64:1043–1053

    CAS  Google Scholar 

  79. Yang MJ, Zhang X, Han KL (2010) Molecular dynamics simulation of SRP GTPases: towards an understanding of the complex formation from equilibrium fluctuations. Proteins Struct Funct Bioinform 78(10):2222–2237

    CAS  Google Scholar 

  80. Yang MJ, Pang XQ, Zhang X, Han KL (2011) Molecular dynamics simulation reveals preorganization of the chloroplast FtsY towards complex formation induced by GTP binding. J Struct Biol 173(1):57–66

    CAS  PubMed  Google Scholar 

  81. Zhang X, Kung S, Shan SO (2008) Demonstration of a multistep mechanism for assembly of the SRP·SRP receptor complex: implications for the catalytic role of SRP RNA. J Mol Biol 381(3):581–593

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Boehr DD, Wright PE (2008) How do proteins interact? Science 320(5882):1429–1430

    CAS  PubMed  Google Scholar 

  83. Focia PJ, Gawronski-Salerno J, Coon JSV, Freymann DM (2006) Structure of a GDP:ALF4 complex of the SRP GTPases Ffh and FtsY, and identification of a peripheral nucleotide interaction site. J Mol Biol 360(3):631–643

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Gawronski-Salerno J, Freymann DM (2007) Structure of the GMPPNP-stabilized NG domain complex of the SRP GTPases Ffh and FtsY. J Struct Biol 158(1):122–128

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Ataide SF, Schmitz N, Shen K, Ke A, Shan SO, Doudna JA, Ban N (2011) The crystal structure of the signal recognition particle in complex with its receptor. Science 331(6019):881–886

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Yang MJ, Zhang X (2011) Molecular dynamics simulations reveal structural coordination of Ffh-FtsY heterodimer toward GTPase activation. Proteins Struct Funct Bioinform 79(6):1774–1785

    CAS  Google Scholar 

  87. Shan SO, Stroud RM, Walter P (2004) Mechanism of association and reciprocal activation of two GTPases. PLoS Biol 2(10):1572–1581

    CAS  Google Scholar 

  88. Gasper R, Meyer S, Gotthardt K, Sirajuddin M, Wittinghofer A (2009) It takes two to tango: regulation of G proteins by dimerization. Nat Rev Mol Cell Biol 10(6):423–429

    CAS  PubMed  Google Scholar 

  89. Celedon JM, Cline K (2013) Intra-plastid protein trafficking: how plant cells adapted prokaryotic mechanisms to the eukaryotic condition. Biochim Biophys Acta Mol Cell Res 1833(2):341–351

    CAS  Google Scholar 

  90. Jaru-Ampornpan P, Chandrasekar S, Shan SO (2007) Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA. Mol Biol Cell 18(7):2636–2645

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Nguyen TX, Chandrasekar S, Neher S, Walter P, Shan SO (2011) Concerted complex assembly and GTPase activation in the chloroplast signal recognition particle. Biochemistry 50(33):7208–7217

    CAS  PubMed  Google Scholar 

  92. Stengel KF, Holdermann I, Wild K, Sinning I (2007) The structure of the chloroplast signal recognition particle (SRP) receptor reveals mechanistic details of SRP GTPase activation and a conserved membrane targeting site. FEBS Lett 581(29):5671–5676

    CAS  PubMed  Google Scholar 

  93. Chandrasekar S, Chartron J, Jaru-Ampornpan P, Shan SO (2008) Structure of the chloroplast signal recognition particle (SRP) receptor: domain arrangement modulates SRP-receptor interaction. J Mol Biol 375(2):425–436

    CAS  PubMed  Google Scholar 

  94. Peluso P, Herschlag D, Nock S, Freymann DM, Johnson AE, Walter P (2000) Role of 4.5s RNA in assembly of the bacterial signal recognition particle with its receptor. Science 288(5471):1640–1643

    CAS  PubMed  Google Scholar 

  95. Bradshaw N, Walter P (2007) The signal recognition particle (SRP) RNA links conformational changes in the SRP to protein targeting. Mol Biol Cell 18(7):2728–2734

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Estrozi LF, Boehringer D, Shan SO, Ban N, Schaffitzel C (2011) Cryo-EM structure of the E. coli translating ribosome in complex with SRP and its receptor. Nat Struct Mol Biol 18(1):88–90

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Zhang X, Rashid R, Wang K, Shan SO (2010) Sequential checkpoints govern substrate selection during cotranslational protein targeting. Science 328(5979):757–760

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Zhang X, Schaffitzel C, Ban N, Shan SO (2009) Multiple conformational switches in a GTPase complex control co-translational protein targeting. Proc Natl Acad Sci USA 106(6):1754–1759

    CAS  PubMed  Google Scholar 

  99. de Leeuw E, Kaat KT, Moser C, Menestrina G, Demel R, de Kruijff B, Oudega B, Luirink J, Sinning I (2000) Anionic phospholipids are involved in membrane association of FtsY and stimulate its GTPase activity. EMBO J 19(4):531–541

    PubMed  Google Scholar 

  100. Lam VQ, Akopian D, Rome M, Henningsen D, Shan SO (2010) Lipid activation of the signal recognition particle receptor provides spatial coordination of protein targeting. J Cell Biol 190(4):623–635

    CAS  PubMed  Google Scholar 

  101. Akopian D, Dalal K, Shen K, Duong F, Shan SO (2013) SecYEG activates GTPases to drive the completion of cotranslational protein targeting. J Cell Biol 200(4):397–405

    CAS  PubMed  Google Scholar 

  102. Shan SO, Schmid SL, Zhang X (2009) Signal recognition particle (SRP) and SRP receptor: a new paradigm for multistate regulatory GTPases. Biochemistry 48(29):6696–6704

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Bradshaw N, Neher SB, Booth DS, Walter P (2009) Signal sequences activate the catalytic switch of SRP RNA. Science 323(5910):127–130

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Shen K, Zhang X, Shan SO (2011) Synergistic actions between the SRP RNA and translating ribosome allow efficient delivery of the correct cargos during cotranslational protein targeting. RNA-A Publ RNA Soc 17(5):892–902

    CAS  Google Scholar 

  105. Schotte F, Cho HS, Kaila VRI, Kamikubo H, Dashdorj N, Henry ER, Graber TJ, Henning R, Wulff M, Hummer G, Kataoka M, Anfinrud PA (2012) Watching a signaling protein function in real time via 100-ps time-resolved Laue crystallography. Proc Natl Acad Sci USA 109(47):19256–19261

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

We thank Dr. Xin Zhang for his insightful comments to this manuscript. This work was supported by the National Basic Research Program of China (2013CB834604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keli Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, M., Pang, X., Han, K. (2014). Multi-state Targeting Machinery Govern the Fidelity and Efficiency of Protein Localization. In: Han, Kl., Zhang, X., Yang, Mj. (eds) Protein Conformational Dynamics. Advances in Experimental Medicine and Biology, vol 805. Springer, Cham. https://doi.org/10.1007/978-3-319-02970-2_16

Download citation

Publish with us

Policies and ethics