Advertisement

Face Verification Using Multiple Localized Face Features

  • Mohd Ridzuwary Mohd Zainal
  • Hafizah Husain
  • Salina Abdul Samad
  • Aini Hussain
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

In this paper, we described face verification execution using different feature extraction methods on different regions of the face. We chose two feature extraction methods which are the Discrete Cosine Transform (DCT) and the Local Binary Pattern (LBP). Classification is done separately on for each region using Support Vector Machine. The final verification decision is calculated by combining the classification scores of the face region. The results show that generally, LBP gives better results than DCT on our dataset and parameter settings but both methods did not extract good discriminating features on the nose region.

Keywords

Face verification local binary pattern discrete cosine transform support vector machine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature survey. ACM Computing Surveys (CSUR) 35(4), 399–458 (2003)CrossRefGoogle Scholar
  2. 2.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. Journal of Cognitive Neurosicence 3(1), 71–86 (1991)CrossRefGoogle Scholar
  3. 3.
    King, I., Xu, L.: Localized principal component analysis learning for face feature extraction and recognition. In: Proceedings to the Workshop on 3D Computer Vision, pp. 124–128 (1997)Google Scholar
  4. 4.
    Jaiswal, A., Kumar, N., Agrawal, R.K.: A Hybrid of Principal Component Analysis and Partial Least Squares for Face Recognition across Pose. In: Alvarez, L., Mejail, M., Gomez, L., Jacobo, J. (eds.) CIARP 2012. LNCS, vol. 7441, pp. 67–73. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Georghiades, A.S., Belhumeur, P.N., Kriegman, D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Anal. Mach. Intelligence 23(6), 643–660 (2001)CrossRefGoogle Scholar
  6. 6.
    Lee, K.C., Ho, J., Kriegman, D.: Acquiring Linear Subspaces for Face Recognition under Variable Lighting. IEEE Trans. Pattern Anal. Mach. Intelligence 27(5), 684–698 (2005)CrossRefGoogle Scholar
  7. 7.
    Chadha, A.R., Vaidya, P.P., Roja, M.M.: Face recognition using discrete cosine transform for global and local features. In: 2011 International Conference on Recent Advancements in Electrical, Electronics and Control Engineering (ICONRAEeCE), pp. 502–505. IEEE (2011)Google Scholar
  8. 8.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29 (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mohd Ridzuwary Mohd Zainal
    • 1
  • Hafizah Husain
    • 1
  • Salina Abdul Samad
    • 1
  • Aini Hussain
    • 1
  1. 1.Universiti Kebangsaan MalaysiaMalaysia

Personalised recommendations