Advertisement

Design Method of Video Based Iris Recognition System (V-IRS)

  • Asama Kuder Nseaf
  • Azizah Jaafar
  • Haroon Rashid
  • Riza Sulaiman
  • Rahmita Wirza O. K. Rahmat
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

Reliable person recognition is crucial in all modern-day processes. Biometric systems have been arrayed by public and private organizations. Iris has been used as the most trusted physical attribute of human being as it is accurate, highly reliable, unchangeable and unique. Iris recognition is the identification for an individual based on iris features. In the past, many methods were used to enhance the efficiency of iris recognition systems (IRS). However, currently, the majority of existing systems substantially limit the position and motion of the subjects during the recognition process. This is largely due to the image acquisition process, rather than the specific pattern-matching algorithm applied during the recognition process. Therefore, the current study proposes an accurate method for identification of people using iris recognition system based on video streaming (V-IRS). The results of the study are expected to reveal that iris recognition on the move is an accurate and effective method to identifying people. The study concludes by highlighting the importance of the iris recognition system based on the subject moving.

Keywords

Accuracy Biometric Technology Features Iris Recognition System 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jain, A.K., Bolle, R., Pankanti, S.: Biometrics: personal identification in networked society. Kluwer Academic Publishers (1999)Google Scholar
  2. 2.
    CASIA Iris Image Database, http://www.cbsr.ia.ac.cn/irisdatabase.htm
  3. 3.
    Flom, L., Safir, A.: Iris recognition system. Google Patents (1987)Google Scholar
  4. 4.
    Sun, Z., Dong, W., Tan, T.: Technology Roadmap for Smart Iris Recognition (2009)Google Scholar
  5. 5.
    Ketchantang, W., Derrode, S., Bourennane, S., Martin, L.: Video pupil tracking for iris based identification. In: Blanc-Talon, J., Philips, W., Popescu, D.C., Scheunders, P. (eds.) ACIVS 2005. LNCS, vol. 3708, pp. 1–8. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    He, Z., Tan, T., Sun, Z.: Iris localization via pulling and pushing. In: 18th International Conference on Pattern Recognition, ICPR 2006, vol. 4, pp. 366–369. IEEE (2006)Google Scholar
  7. 7.
    De Mira Jr., J., Mayer, J.: Image feature extraction for application of biometric identification of iris-a morphological approach. In: XVI Brazilian Symposium on Computer Graphics and Image Processing, SIBGRAPI 2003, pp. 391–398. IEEE (2003)Google Scholar
  8. 8.
    Guo, G., Jones, M.J.: Iris extraction based on intensity gradient and texture difference. In: IEEE Workshop on Applications of Computer Vision, WACV 2008, pp. 1–6. IEEE (2008)Google Scholar
  9. 9.
    Proença, H., Alexandre, L.A.: UBIRIS: A Noisy Iris Image Database. In: Roli, F., Vitulano, S. (eds.) ICIAP 2005. LNCS, vol. 3617, pp. 970–977. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Ma, L., Tan, T., Wang, Y., Zhang, D.: Personal identification based on iris texture analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 1519–1533 (2003)CrossRefGoogle Scholar
  11. 11.
    Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: A survey. Computer Vision and Image Understanding 110, 281–307 (2008)CrossRefGoogle Scholar
  12. 12.
    Kader, W.M., Rashid, H., Mamun, M., Bhuiyan, M.A.S.: Advancement of CMOS Schmitt Trigger Circuits. Modern Applied Science 6, 51 (2012)CrossRefGoogle Scholar
  13. 13.
    Masek, L.: Recognition of human iris patterns for biometric identification. Master’s thesis, University of Western Australia (2003)Google Scholar
  14. 14.
    Liu, X., Bowyer, K.W., Flynn, P.J.: Experimental evaluation of iris recognition. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, CVPR Workshops, p. 158. IEEE (2005)Google Scholar
  15. 15.
    Hollingsworth, K., Baker, S., Ring, S., Bowyer, K.W., Flynn, P.J.: Recent research results in iris biometrics. In: Proc. of SPIE, vol. 7306, p. 73061Y (2009)Google Scholar
  16. 16.
    Rashid, H., Mamun, M., Amin, M.S., Husain, H.: Design of a Low Voltage Schmitt Trigger in 0.18 um CMOS Process With Tunable Hysteresis. Modern Applied Science 7, 47 (2013)CrossRefGoogle Scholar
  17. 17.
    Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 1148–1161 (1993)CrossRefGoogle Scholar
  18. 18.
    Daugman, J.: How iris recognition works. IEEE Transactions on Circuits and Systems for Video Technology 14, 21–30 (2004)CrossRefGoogle Scholar
  19. 19.
    Nseaf, A.K.: Enhancement segmentation technique for iris recognition system based on hough transform. Master. University Kebangsaan Malaysia UKM, Bangi (2011)Google Scholar
  20. 20.
    Negin, M., Chmielewski Jr., T.A., Salganicoff, M., von Seelen, U.M., Venetainer, P.L., Zhang, G.G.: An iris biometric system for public and personal use. Computer 33, 70–75 (2000)CrossRefGoogle Scholar
  21. 21.
    Wildes, R.P.: Iris recognition: an emerging biometric technology. Proceedings of the IEEE 85, 1348–1363 (1997)CrossRefGoogle Scholar
  22. 22.
    Nsaef, A.K., Jaafar, A., Jassim, K.N.: Enhancement segmentation technique for iris recognition system based on Daugman’s Integro-differential operator. In: 2012 International Symposium on Instrumentation & Measurement, Sensor Network and Automation (IMSNA), vol. 1, pp. 71–75. IEEE (2012)Google Scholar
  23. 23.
    He, Z., Tan, T., Sun, Z., Qiu, X.: Toward accurate and fast iris segmentation for iris biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence 31, 1670–1684 (2009)CrossRefGoogle Scholar
  24. 24.
    Shamsi, M., Saad, P.B., Ibrahim, S.B., Kenari, A.R.: Fast algorithm for iris localization using Daugman circular integro differential operator. In: International Conference of Soft Computing and Pattern Recognition, SOCPAR 2009, pp. 393–398. IEEE (2009)Google Scholar
  25. 25.
    Ling, L.L., de Brito, D.F.: Fast and efficient iris image segmentation. Journal of Medical and Biological Engineering 30, 381–391 (2010)CrossRefGoogle Scholar
  26. 26.
    Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J., Matey, J.R., McBride, S.E.: A system for automated iris recognition. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 121–128. IEEE (1994)Google Scholar
  27. 27.
    Kong, W.K., Zhang, D.: Accurate iris segmentation based on novel reflection and eyelash detection model. In: Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing, pp. 263–266. IEEE (2001)Google Scholar
  28. 28.
    Tisse, C.-L., Martin, L., Torres, L., Robert, M.: Person identification technique using human iris recognition. In: Proc. of Vision Interface. Citeseer (2002)Google Scholar
  29. 29.
    Li, P., Liu, X.: An incremental method for accurate iris segmentation. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)Google Scholar
  30. 30.
    Daugman, J.G.: Biometric personal identification system based on iris analysis. Google Patents (1994)Google Scholar
  31. 31.
    Daugman, J.: How iris recognition works. In: Proceedings of the 2002 International Conference on Image Processing, vol. 1, 31, pp. I-33–I-36. IEEE (2002)Google Scholar
  32. 32.
    Sanderson, S., Erbetta, J.H.: Authentication for secure environments based on iris scanning technology (2000)Google Scholar
  33. 33.
    Zhou, S.: A novel approach to iris localization and code matching for iris recognition. Nova Southeastern University (2009)Google Scholar
  34. 34.
    Boles, W.W., Boashash, B.: A human identification technique using images of the iris and wavelet transform. IEEE Transactions on Signal Processing 46, 1185–1188 (1998)CrossRefGoogle Scholar
  35. 35.
    Yuan, X., Shi, P.: A non-linear normalization model for iris recognition. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 135–141. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  36. 36.
    Lim, S., Lee, K., Byeon, O., Kim, T.: Efficient iris recognition through improvement of feature vector and classifier. ETRI Journal 23, 61–70 (2001)CrossRefGoogle Scholar
  37. 37.
    Sanchez-Avila, C., Sanchez-Reillo, R.: Two different approaches for iris recognition using Gabor filters and multiscale zero-crossing representation. Pattern Recognition 38, 231–240 (2005)CrossRefGoogle Scholar
  38. 38.
    Wildes, R.P., Asmuth, J.C., Green, G.L., Hsu, S.C., Kolczynski, R.J., Matey, J.R., McBride, S.E.: A system for automated iris recognition. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision, pp. 121–128. IEEE (1994)Google Scholar
  39. 39.
    International Biometrics Group, Independent Testing of Iris Recognition Technology. Final Report (May 2005), http://www.biometricgroup.com/reports/public/ITIRT.html
  40. 40.
    Iris Challenge Evaluation, http://iris.nist.gov/ice/

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Asama Kuder Nseaf
    • 1
  • Azizah Jaafar
    • 1
  • Haroon Rashid
    • 2
  • Riza Sulaiman
    • 1
  • Rahmita Wirza O. K. Rahmat
    • 3
    • 4
    • 5
  1. 1.Institute of Visual Informatics (IVI)Universiti Kebangsaan MalaysiaMalaysia
  2. 2.Department of Electrical, Electronic and Systems EngineeringUniversitiKebangsaan MalaysiaMalaysia
  3. 3.Fakulti Sains Komputer dan Teknologi MaklumatUniversiti Putra MalaysiaMalaysia
  4. 4.UniversitiKebangsaan Malaysia, JalanRekoBangiMalaysia
  5. 5.Universiti Putra Malaysia, UPMSerdangMalaysia

Personalised recommendations