Color-Spatial Person Re-identification by a Voting Matching Scheme

  • Mohammad Ali Saghafi
  • Aini Hussain
  • Halimah Badioze Zaman
  • Mohamad Hanif Md. Saad
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)


This paper introduces a novel and fast method for person re-identification using features extracted from the appearance of individuals observed in non-overlapped fields of views in a network of surveillance cameras. The proposed method involves segmentation of silhouettes into meaningful regions, which is close to human visual categorization of colorful clothes, consequently obtaining better performance in various poses. The spatial features extracted from these areas that include color features contribute to the robustness of the method due to illumination changes. In addition, the use of the voting scheme reduces the computational complexity of the algorithm, thus yielding a fast algorithm.


re-identification appearance-based spatial feature illumination 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Farenzena, M., Bazzani, L., Perina, A., Murino, V., Cristani, M.: Person re-identification by Symmetry-Driven Accumulation of Local Features. In: International Conference on Computer Vision and Pattern Recognition, CVPR, USA, pp. 2360–2367 (2010)Google Scholar
  2. 2.
    Zheng, W.-S., Gong, S., Xiang, T.: Person re-identification by probabilistic relative distance comparison. In: IEEE Conf. on CVPR, USA, pp. 649–656 (2011)Google Scholar
  3. 3.
    Gheissari, N., Sebastian, T.B., Tu, P.H., Rittscher, J., Hartley, R.: Person re-identification using spatiotemporal appearance. In: International Conference on Computer Vision and Pattern Recognition, CVPR, USA, pp. 1528–1535 (2006)Google Scholar
  4. 4.
    Bak, S., Corvee, E., Brémond, F., Thonnat, M.: Person Re-identification Using Haar-based and DCD-based Signature. In: 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, USA, pp. 1–8 (2010)Google Scholar
  5. 5.
    Mazzon, R., Tahir, S.F., Cavallaro, A.: Person Re-Identification in Crowd. Pattern Recognition Letters 33(14), 1828–1837 (2012)CrossRefGoogle Scholar
  6. 6.
    Skog, D.: Gait-based Re-identification of People in Urban Surveillance Video, Master thesis, Uppsala University, Department of Information Technology (2010)Google Scholar
  7. 7.
    Khan, A., Zhang, J., Wang, Y.: Appearance-Based Re-identification of People in Video. In: International Conference on Digital Image Computing: Techniques and Applications, DICTA 2010, Australia, pp. 357–362 (2010)Google Scholar
  8. 8.
    Satta, R., Fumera, G., Roli, F., Cristani, M., Murino, V.: A Multiple Component Matching Framework for Person Re-Identification. In: 16th Int. Conf. on Image Analysis and Processing, ICIAP, Italy, pp. 140–149 (2011)Google Scholar
  9. 9.
    Huang, C.H., Wu, Y.T., Shih, M.Y.: Unsupervised Pedestrian Re-identification for Loitering Detection. In: 3rd Pacific Rim Symposium on Advances in Image and Video Technology (2009)Google Scholar
  10. 10.
    Jojic, N., Perina, A., Cristani, M., Murino, V., Frey, B.: Stel component analysis: Modeling spatial correlations in image class structure. In: International Conference on Computer Vision and Pattern Recognition, CVPR, USA, pp. 2044–2051 (2009)Google Scholar
  11. 11.
    Bak, S., Corvee, E., Brémond, F., Thonnat, M.: Person Re-identification Using Spatial Covariance Regions of Human Body Parts. In: 7th IEEE International Conference on Advanced Video and Signal Based Surveillance, USA, pp. 435–440 (2010)Google Scholar
  12. 12.
    Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person Re-Identification by Descriptive and Discriminative Classification. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  13. 13.
    Schügerl, P., Sorschag, R., Bailer, W., Thallinger, G.: Object Re-detection Using SIFT and MPEG-7. In: Sebe, N., Liu, Y., Zhuang, Y.-T., Huang, T.S. (eds.) MCAM 2007. LNCS, vol. 4577, pp. 305–314. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  14. 14.
    De Oliveira, I.O., De Souza Pio, J.L.: People Re-identification in a camera network. In: 8th IEEE International Conference on Dependable, Autonomic and Secure Computing, DASC 2009, China, pp. 461–466 (2009)Google Scholar
  15. 15.
    Cong, D.-N.T., Khoudour, L., Achard, C., Phothisane, P.: People Re-identification by Means of a Camera Network Using a Graph-based Approach. In: IAPR Conference on Machine Vision Applications, MVA 2009, Japan, pp. 152–155 (2009)Google Scholar
  16. 16.
    Stanley, T., Rangarajan, S.: Spatiograms versus Histograms for Region-Based Tracking. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, USA, vol. 2, pp. 1158–1163 (2005)Google Scholar
  17. 17.
    Lo Presti, L., Morana, M., La Cascia, M.: A Data Association Algorithm for People Re-Identification in Photo Sequences. In: IEEE International Symposium on Multimedia, Taiwan, pp. 318–323 (2010)Google Scholar
  18. 18.
    Satta, R., Fumera, G., Roli, F.: Fast person re-identification based on dissimilarity representations. Pattern Recognition Letters 33(14), 1838–1848 (2012)CrossRefGoogle Scholar
  19. 19.
    Bhattacharyya, A.: On a measure of divergence between two statistical populations defined by their probability distribution. Bulletin of the Calcutta Mathematical Society 35, 99–110 (1943)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hamdoun, O., Moutarde, F., Stanciulescu, B., Steux, B.: Person re-identification in multi-camera system by signature based on interest point descriptors collected on short video sequences. In: IEEE Conference on Distributed Smart Cameras, USA, pp. 1–6 (2008)Google Scholar
  21. 21.
    Gray, D., Brennan, S., Tao, H.: Evaluating appearance models for recognition, reacquisition and tracking. In: PETS (2007)Google Scholar
  22. 22.
    Barnich, O., Van Droogenbroeck, M.: ViBe: A universal background subtraction algorithm for video sequences. IEEE Transactions on Image Processing 20(6), 1709–1724 (2011)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Ray, S., Turi, R.H.: Determination of number of clusters in K-Means clustering and application in color Image Segmentation. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology 17(3), 297–311 (2006)Google Scholar
  24. 24.
    Gersho, A., Gray, R.M.: Vector quantisation and signal compression. Kluwer Academic Publishers (1992)Google Scholar
  25. 25.
    Cinque, L., Ciocca, G., Levialdi, S., Pellicano, A., Schettini, R.: Color-based image retrieval using spatial-chromatic histogram. Image and Vision Computing 19(13), 979–986 (2001)CrossRefGoogle Scholar
  26. 26.
    Saad, M.H.M., Hussain, A., Kong, W., Tahir, N.M., Abdul Rahman, F.Y.: SESRG-InViSS: Image and Video Data Set for Human Pose, Action, Activity and Behavior Detection. In: International Conference on Systems Engineering and Technology, ICSET 2013 (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Mohammad Ali Saghafi
    • 1
  • Aini Hussain
    • 1
  • Halimah Badioze Zaman
    • 2
  • Mohamad Hanif Md. Saad
    • 1
  1. 1.Smart Engineering System Research Group (SESRG), Faculty of Engineering and Built EnvironmentUniversity Kebangsaan Malaysia (UKM)BangiMalaysia
  2. 2.Institute of Visual InformaticsUniversity Kebangsaan Malaysia (UKM)BangiMalaysia

Personalised recommendations