Advertisement

MMUGait Database and Baseline Results

  • Hu Ng
  • Chiung Ching Ho
  • Wooi-Haw Tan
  • Hau-Lee Tong
  • Kok-Why Ng
  • Timothy Tzen-Vun Yap
  • Pei-Fen Chong
  • Lay-Kun Tan
  • Junaidi Abdullah
  • Chikkannan Eswaran
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

This paper describes the acquisition setup and development of a new gait database, MMUGait DB. The database was captured in side and oblique views, where 82 subjects participated under normal walking conditions and 19 subjects walking under 11 covariate factors. The database includes ‘sarong’ and ‘kain samping’ as changes of apparel, which are the traditional costumes for ethnic Malays in South East Asia. Classification experiments were carried out on MMUGait DB and the baseline results are presented for validation purposes.

Keywords

gait database gait biometrics segmentation classification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shutler, J., Grant, M., Nixon, M.S., Carter, J.: On a Large Sequence-based Human Gait Database. In: Proc. of 4th International Conference on Recent Advances in Soft Computing, Nottingham, UK, pp. 66–71 (2002)Google Scholar
  2. 2.
    Makihara, Y., Mannami, H., Tsuji, A., Hossain, M.A., Sugiura, K., Mori, A., Yagi, Y.: The OU-ISIR Gait Database Comprising the Treadmill Dataset. IPSJ Trans. on Computer Vision and Applications 4, 53–62 (2012)CrossRefGoogle Scholar
  3. 3.
    Little, J., Boyd, J.: Recognizing People by Their Gait: The Shape of Motion. Videre: Journal of Computer Vision Research 1(2), 1–32 (1998)Google Scholar
  4. 4.
    Sarkar, S., Phillips, P.J., Liu, Z., Vega, I.R., Grother, P., Bowyer, K.W.: The Humanid Gait Challenge Problem: Data Sets, Performance, and Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(2), 162–177 (2005)CrossRefGoogle Scholar
  5. 5.
    Yu, S., Tan, D., Tan, T.: A Framework for Evaluating the Effect of View Angle, Clothing and Carrying Condition on Gait Recognition. In: Proc. of International Conference on Pattern Recognition, vol. 4, pp. 441–444 (2006)Google Scholar
  6. 6.
    Lee, S.J., Hidler, J.: Biometrics of Overground Vs. Treadmill Walking in Healthy Individuals. Journal of Applied Physiology 104(3), 747–755 (2008)CrossRefGoogle Scholar
  7. 7.
    Yam, C., Nixon, M.S., Carter, J.N.: Automated Person Recognition by Walking and Running via Model-Based Approaches. Pattern Recognition 37(5), 1057–1072 (2004)CrossRefGoogle Scholar
  8. 8.
    Wagg, K., Nixon, M.S.: On Automated Model-Based Extraction and Analysis of Gait. In: Proc. of 6th IEEE International Conference on Automatic Face and Gesture Recognition, pp. 11–16 (2004)Google Scholar
  9. 9.
    Bouchrika, I., Nixon, M.S.: Model-based Features Extraction for Gait Analysis and Recognition. In: Proc. of Mirage: Computer and Vision/Computer Graphics Collaboration Techniques and Applications, pp. 150–160 (2007)Google Scholar
  10. 10.
    Ho, C.C., Ng, H., Tan, W.H., Ng, K.W., Tong, H.L., Yap, T.T.V., Chong, P.F., Eswaran, C., Junaidi, A.: MMU GASPFA: A COTS multimodal biometric database. Pattern Recognition Letters 34(15), 2043–2050 (2013)CrossRefGoogle Scholar
  11. 11.
    Otsu, N.: A Threshold Selection Method from Gray-level Histograms. Automatica 11(285-296), 23–27 (1975)Google Scholar
  12. 12.
    Ng, H., Tan, W.H., Junaidi, A.: Multi-view Gait Based Human Identification System with Covariate Analysis. International Arab Journal of Information Technology 10(5), 519–526 (2013)Google Scholar
  13. 13.
    Dempster, W.T., Gaughran, G.R.L.: Properties of Body Segments Based on Size and Weight. American Journal of Anatomy 120, 33–54 (1967)CrossRefGoogle Scholar
  14. 14.
    Aksoy, S., Haralick, R.: Feature Normalization and Likelihood-based Similarity Measures for Image Retrieval. Pattern Recognition Letters 22(5), 563–582 (2001)CrossRefzbMATHGoogle Scholar
  15. 15.
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. ACM SIGKDD Explorations Newsletter 11(1), 10–18 (2009)CrossRefGoogle Scholar
  16. 16.
    Byun, H., Lee, S.W.: A Survey on Pattern Recognition Applications of Support Vector Machines. International Journal of Pattern Recognition and Artificial Intelligence 17(03), 459–486 (2003)CrossRefGoogle Scholar
  17. 17.
    Chang, C.C., Lin, C.J.: LIBSVM: A Library for Support Vector Machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Hu Ng
    • 1
  • Chiung Ching Ho
    • 1
  • Wooi-Haw Tan
    • 2
  • Hau-Lee Tong
    • 1
  • Kok-Why Ng
    • 1
  • Timothy Tzen-Vun Yap
    • 1
  • Pei-Fen Chong
    • 1
  • Lay-Kun Tan
    • 3
  • Junaidi Abdullah
    • 1
  • Chikkannan Eswaran
    • 1
  1. 1.Faculty of Computing and InformaticsMultimedia UniveristyCyberjayaMalaysia
  2. 2.Faculty of EngineeringMultimedia UniveristyCyberjayaMalaysia
  3. 3.Sekolah Menengah Seksyen 3 Bandar KinraraPuchongMalaysia

Personalised recommendations