Increasing the Tracking Efficiency of Mobile Augmented Reality Using a Hybrid Tracking Technique

  • Waqas Khalid Obeidy
  • Haslina Arshad
  • Shahan Ahmad Chowdhury
  • Behrang Parhizkar
  • Jiungyao Huang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)


Traditional vision tracking approaches have failed to support the fast tracking required by Mobile Augmented Reality (MAR) for a real-time interactive effect. The main problem addressed by this research is the tracking problem in MAR where the computational load is a major issue. In this paper we proposed a more efficient visual tracking technique based on fast detectors and small binary descriptors which are capable of providing both; scale and rotation invariance. We also propose a new hybrid tracking technique which can speed up the overall performance of MAR by reducing the detection rate of the tracking process. The hybrid technique is based on the usage of inertial sensors such as accelerometer, gyroscopes and gravitational vectors which can readily improve the efficiency of any vision based feature tracking system that uses computer vision. The preliminary tests carried out during the course of the study produced very promising results.


Mobile Augmented Reality Hybrid Tracking Feature Detection Computer Vision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, H., Lee, G.: Interaction Methods for Mobile Augmented Reality. In: Proceedings of the 13th International Conference of the NZ Chapter of the ACM’s Special Interest Group on Human-Computer Interaction (CHINZ 2012), p. 101 (2012)Google Scholar
  2. 2.
    Wagner, D., Schmalstieg, D.: ARToolKitPlus for Pose Tracking on Mobile Devices. In: Computer Vision Winter Workshop, pp. 1-8 (2007)Google Scholar
  3. 3.
    Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D.: Pose tracking from natural features on mobile phones. In: Int. Symp. on Mixed and Augmented Reality, pp. 125–134 (2008)Google Scholar
  4. 4.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. Journal of Computer Vision 60(2), 91–110 (2004)Google Scholar
  5. 5.
    Rosten, E., Drummond, T.: Fusing Points and Lines for High Performance Tracking. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 2 (2005)Google Scholar
  6. 6.
    Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features. Computer Vision and Image Understanding 110(3), 346–359 (2008)CrossRefGoogle Scholar
  7. 7.
    Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: Orb: an efficient alternative to sift or surf (2011)Google Scholar
  9. 9.
    Leutenegger, S., Chli, M., Siegwart, R.: Brisk: Binary robust invariant scalable keypoints (2011)Google Scholar
  10. 10.
    Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast Retina Keypoint. In: IEEE Conference on Computer Vision and Pattern Recognition (2012)Google Scholar
  11. 11.
    Vallino, J.R.: Interactive Augmented Reality. Thesis Doctor of Philosophy, Department of Computer Science, University of Rochester (1998)Google Scholar
  12. 12.
    Sutherland, I.E.: The Ultimate Display. In: Proceedings of the IFIP Congress, New York, vol. 2, pp. 506–508 (1965)Google Scholar
  13. 13.
    Rosenblum, L., Julier, S.: Projects in VR, Making Augmented Reality Practical on Mobile Phones, Part 1, pp. 1–4 (2009)Google Scholar
  14. 14.
    Zheng, Ni, L.M.: Smart Phone and Next-Generation Mobile Computing. Morgan Kaufmann Publishers, San Francisco (2006)Google Scholar
  15. 15.
    Wagner, D., Schmalstieg, D.: History and Future of Tracking for Mobile Phone Augmented Reality. In: International Symposium on Ubiquitous Virtual Reality (ISUVR 2009), pp. 1–4 (2009)Google Scholar
  16. 16.
    Koch, D., Walther, D., Edgington, C.: Detection and tracking of objects in underwater video. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2004)Google Scholar
  17. 17.
    Klein, G., Murray, D.W.: Parallel tracking and mapping for small AR workspaces. In: Proceedings of the International Symposium on Mixed and Augmented Reality, ISMAR (2007)Google Scholar
  18. 18.
    Klein, G., Murray, D.: Parallel tracking and mapping on a camera phone. In: International Symposium on Mixed and Augmented Reality (2009)Google Scholar
  19. 19.
    Skrypnyk, I., Lowe, D.: Scene modeling, recognition and tracking with invariant image features. In: Proc. of ISMAR 2004, pp. 110–119 (2004)Google Scholar
  20. 20.
    Davison, A.J., Mayol, W.W., Murray, D.W.: Real-time localization and mapping with wearable active vision. In: Proc. of ISMAR, pp. 18–27 (2003)Google Scholar
  21. 21.
    Klein, G., Drummond, T.: Robust visual tracking for noninstrumented augmented reality. In: Proc. of ISMAR, pp. 113–122 (2003)Google Scholar
  22. 22.
    Bleser, G., Stricker, D.: Advanced tracking through efficient image processing and visual-inertial sensor fusion. In: Proc. of IEEE VR, pp. 137–144 (2008)Google Scholar
  23. 23.
    Lepetit, V., Lagger, P., Fua, P.: Randomized trees for real-time keypoint recognition. In: Proc. CVPR, pp. 775–781 (2005)Google Scholar
  24. 24.
    Naimark, L., Foxlin, E.: Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Vision-Inertial Self-Tracker. In: Proceedings of the 1st International Symposium on Mixed and Augmented Reality (ISMAR), pp. 27–36. IEEE Computer Society, Washington, DC (2002)CrossRefGoogle Scholar
  25. 25.
    Jiang, B., Neumann, U., Suya, Y.: A robust hybrid tracking system for outdoor augmented reality. In: Proceedings of Virtual Reality, pp. 3–275 (2004)Google Scholar
  26. 26.
    Hol, J.D., Schon, T.B., Gustafsson, F., Slycke, P.J.: Sensor Fusion for Augmented Reality. In: 9th International Conference on Information Fusion, pp. 1–6 (2006)Google Scholar
  27. 27.
    Reitmayr, G., Drummond, T.W.: Initialization for Visual Tracking in Urban Environments, pp. 161–172 (2007)Google Scholar
  28. 28.
    Seo, B.-K., Kim, K., Park, J.: A tracking framework for augmented reality tours on cultural heritage sites. In: 9th ACM SIGGRAPH Conf. on Virtual-Reality Continuum and its Applications in Industry, pp. 169–174 (2010)Google Scholar
  29. 29.
    Lee, G.A., Yang, U., Kim, Y., Jo, D., Kim, H., Kim, J.H., Choi, J.: Freeze-Set-Go Interaction Method for Handheld Mobile Augmented Reality Environments. In: VRST 2009 Proceedings of the 16th ACM Symposium on Virtual Reality Software and Technology, pp. 143–146 (2009)Google Scholar
  30. 30.
    Seichter, H., Schmalstieg, D.: Handheld augmented reality indoor navigation with activity-based instructions. In: 13th Int’l Conf. on Human-Computer Interaction with Mobile Devices and Services (2011)Google Scholar
  31. 31.
    Kurkovsky, S., Koshy, R., Novak, V., Szul, P.: Current issues in handheld augmented reality. In: International Conference on Communications and Information Technology (ICCIT), pp. 68–72 (2011)Google Scholar
  32. 32.
    Siltanen, S.: Theory and applications of marker-based augmented reality (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Waqas Khalid Obeidy
    • 1
  • Haslina Arshad
    • 1
  • Shahan Ahmad Chowdhury
    • 1
  • Behrang Parhizkar
    • 2
  • Jiungyao Huang
    • 3
  1. 1.School of Information Technology, Faculty of Information Science and TechnologyUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.School of Computer ScienceThe University of NottinghamUK
  3. 3.Department of Computer Science & Information EngineeringNational Taipei UniversityTaiwan

Personalised recommendations