Advertisement

An Endeavour to Detect Persons Using Stereo Cues

  • Rim Trabelsi
  • Fethi Smach
  • Issam Jabri
  • Fatma Abdelkefi
  • Hichem Snoussi
  • Ammar Bouallegue
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

The present work aims to exploit the new generation of 3D vision systems for detecting people. We present a challenge process dedicated to test the feasibility of detection over disparity maps by exploiting techniques used with monocular cues, specifically HOG/SVM. Disparity maps are extracted by a developed stereoscopic vision system using two passive sensors with an algorithm stack well adopted to real time constraint with lower processing speeds. This detection module can improve systems’perception ability in complex scenes under shadows, gradual/sudden illumination changes and animated texture. Another key point is to estimate their exact locations to predict intrusions in monitored areas. Results indicate a clear advantage of the proposed method to enhance the rate of performance up to 99.6%.

Keywords

Passive stereovision Disparity maps Pedestrian detection HOG SVM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geronimo, D., Lopez, A.M., Graf, T.: Survey on pedestrian detection for advanced driver assistance systems. IEEE Transactions on Pattern Analysis and Machine Intelligence (2009)Google Scholar
  2. 2.
    Dollar, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian Detection: A Benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, Miami Florida, USA (June 2009)Google Scholar
  3. 3.
    Cutler, R., Davis, L.S.: Robust real-time periodic motion detection, analysis, and applications. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 781–796 (2000)CrossRefGoogle Scholar
  4. 4.
    Viola, P., Jones, M., Snow, D.: Detecting pedestrians using patterns of motion and appearance. In: International Conference on Computer Vision, Nice, France (2003)Google Scholar
  5. 5.
    Salvi, J., Armangue, X., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition 35(7), 1617–1635 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. International Journal of Computer Vision 47(1–3), 7–42 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    Janoch, A., Karayev, S., Jia, Y., Barron, J., Fritz, M., Saenko, K., Darrell, T.: A category-level 3d object dataset: Putting the kinect to work. In: Consumer Depth Cameras for Computer Vision. Springer, London (2013)Google Scholar
  8. 8.
    Yu, W., Ashraf, A.B., Chang, Y.-J., Li, C., Chen, T.: 3d augmented markov random field for object recognition. In: IEEE International Conference on Image Processing, pp. 3889–3892 (2010)Google Scholar
  9. 9.
    Mitzel, D., Leibe, B.: Close-range human detection and tracking for head-mounted cameras (2012)Google Scholar
  10. 10.
    Molinier, T., Rossi, L., Akhloufi, M., Tison, Y., Pieri, A.: Estimation of fire volume by stereovision. In: SPIE-Image Processing: Machine Vision Applications, vol. 7877 (2011)Google Scholar
  11. 11.
    Li, P., Farin, D., Gunnewiek, R., With, P.D.: On Creating Depth Maps from Monoscopic Video using Structure From Motion. In: IEEE Workshop on Content Generation and Coding for 3D-Television (June 2006)Google Scholar
  12. 12.
    Howard, I.: Perceiving in Depth: Basic Mechanisms, vol. 1. Oxford University Press (March 2012)Google Scholar
  13. 13.
    Faugeras, O.: Three-dimensional computer-vision: a geometric viewpoint. MIT Press (1993)Google Scholar
  14. 14.
    Armangu, X., Salvi, J., Batlle, J.: A comparative review of camera calibrating methods with accuracy evaluation. Pattern Recognition 35, 1617–1635 (2000)Google Scholar
  15. 15.
    Weng, J., Cohen, P., Herniou, M.: Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence 14(10), 965–980 (1992)CrossRefGoogle Scholar
  16. 16.
    Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IEEE International Conference on Computer Vision, Corfu, Greece (September 1999)Google Scholar
  17. 17.
    Papadimitriou, D., Dennis, T.: Epipolar line estimation and rectification for stereo image pairs. IEEE International Transactions on Image Processing 5(4), 672–676 (1996)CrossRefGoogle Scholar
  18. 18.
    Brown, M., Burschka, D., Hager, G.: Advances in Computational Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(8), 993–1008 (2003)CrossRefGoogle Scholar
  19. 19.
    Roy, S., Cox, I.: A maximum-flow formulation of the n-camera stereo correspondence problem. In: IEEE International Conference on Computer Vision, Bombay, India (January 1998)Google Scholar
  20. 20.
    Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human Detection. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA (June 2005)Google Scholar
  21. 21.
    Enzweiler, M., Gavrila, D.: Monocular Pedestrian Detection: Survey and Experiments. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(12), 2179–2195 (2009)CrossRefGoogle Scholar
  22. 22.
    Vapnik, V.N.: The nature of statistical learning theory. Springer-Verlag New York, Inc. (1995)Google Scholar
  23. 23.
    Smach, F., Lemaître, C., Gauthier, J.-P., Miteran, J., Atri, M.: Generalized Fourier Descriptors with Applications to Objects Recognition in SVM Context. Journal of Mathematical Imaging and Vision 30(1), 43–71 (2008)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Rim Trabelsi
    • 1
    • 5
  • Fethi Smach
    • 2
  • Issam Jabri
    • 1
  • Fatma Abdelkefi
    • 3
  • Hichem Snoussi
    • 4
  • Ammar Bouallegue
    • 5
  1. 1.IResCoMath Unit, National Engineering School of GabesUniversity of GabesTunisia
  2. 2.ActivNetworksCourtaboeuf CedexFrance
  3. 3.COSIM Laboratory, High School of Communications of TunisUniversity of CarthageTunisia
  4. 4.LM2S Laboratory, Charles Delaunay InstituteUniversity of Technology of TroyesFrance
  5. 5.SysCom Laboratory, National Engineering School of TunisUniversity of Tunis ElManarTunisia

Personalised recommendations