Advertisement

Understanding Big Picture and Its Challenges: Experts and Decision Makers Perspectives

  • Suraya Ya’acob
  • Nazlena Mohamad Ali
  • Norshita Mat Nayan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

The big picture of an organization plays an important role in providing insight into the decision making process. Thus, the objectives of this paper are to investigate how experts and decision makers obtain the features of the big picture, and then identify related challenges (problems and issues). Data analysis and interpretation show that experts and decision makers gain the big picture through a process of collaboration. Basically there are four main sequences in the collaboration process of constructing the big picture. These are: (i) understanding the big picture requirements, (ii) extracting content from the tools, (iii) collaborating on pieces of information and (iv) using the collaborative information for decision making. In addition, the challenges of attaining the big picture were identified and then clustered into the 3 main components from the perspective of knowledge visualization (KV) on user perception, namely cognition, perception and communication. Data was collected using semi structured interviews following qualitative methods. The sketching technique was used in the one-to-one interviews to represent mental models which are important for later use in the design stage.

Keywords

big picture knowledge visualization cognition and perception 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bertschi, S.: Knowledge Visualization and Business Analysis: Meaning as Media. In: IEEE International Conference Information Visualization, vol. 13, pp. 480–485 (2009)Google Scholar
  2. 2.
    Bresciani, S., Eppler, M.J.: Choosing Knowledge Visualizations to Augment Cognition: The Managers’ View. In: IEEE International Conference Information Visualization, vol. 14, pp. 355–360 (2010)Google Scholar
  3. 3.
    Bischof, N., Comi, A., Eppler, M.J.: Knowledge Visualization in Qualitative Methods - Or How Can I See What I Say? In: IEEE International Conference Information Visualization, vol. 15, pp. 371–376 (2011)Google Scholar
  4. 4.
    Dillon, K.M., Talbot, P.J., Hillis, W.D.: Knowledge Visualization: Redesigning the Human-Computer Interface. Technology Review Journal 13(1), 37–55 (2005)Google Scholar
  5. 5.
    Mengis, J., Eppler, M.J.: Seeing versus Arguing. The Moderating Role of Collaborative Visualization in Team Knowledge Integration. Journal of Universal Knowledge Management 1(3), 151–162 (2006)Google Scholar
  6. 6.
    Eppler, M.J., Hoffmann, F., Bresciani, S.: New Business Models Through Collaborative Idea Generation. International Journal of Innovation Management 15(06), 1323–1341 (2011)CrossRefGoogle Scholar
  7. 7.
    Eppler, M.J., Mengis, J., Bresciani, S.: Seven Types of Visual Ambiguity: On the Merits and Risks of Multiple Interpretations of Collaborative Visualizations. In: IEEE International Conference of Information Visualization, vol. 12, pp. 391–396 (2008)Google Scholar
  8. 8.
    Bresciani, S., Blackwell, A.F., Eppler, M.: A Collaborative Dimensions Framework: Understanding the mediating role of conceptual visualizations in collaborative knowledge work. In: IEEE Hawaii International Conference on System Sciences, vol. 41, pp. 364–364 (2008)Google Scholar
  9. 9.
    Kolfschoten, G.L., Brazier, F.: Cognitive Load in Collaboration-Convergence. In: Hawaii International Conference on System Sciences, vol. 45, pp. 129–138 (2012)Google Scholar
  10. 10.
    Liu, Z., Stasko, J.T.: Mental models, visual reasoning and interaction in information visualization: a top-down perspective. IEEE Transactions On Visualization and Computer Graphics 16(6), 999–1008 (2010)CrossRefGoogle Scholar
  11. 11.
    Mengis, J., Eppler, M.J.: Understanding and Managing Conversations from a Knowledge Perspective: An Analysis of the Roles and Rules of Face-to-face Conversations in Organizations. Organization Studies 29(10), 1287–1313 (2007)CrossRefGoogle Scholar
  12. 12.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 101(2), 343–352 (1994)CrossRefGoogle Scholar
  13. 13.
    Burkhard, R.A.: Towards a framework and a model for knowledge visualization: Synergies between information and knowledge visualization. In: Tergan, S.-O., Keller, T. (eds.) Knowledge and Information Visualization. LNCS, vol. 3426, pp. 238–255. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Sweller, J., Van Merrienboer, J.J.: Cognitive Load Theory and Complex Learning: Recent Developments and future directions. Educational Psychology Review 17(2), 147–177 (2005)CrossRefGoogle Scholar
  15. 15.
    Keller, T., Grimm, M.: The Impact of Dimensionality and Color Coding of Information Visualizations on Knowledge Acquisition. In: Tergan, S.-O., Keller, T. (eds.) Knowledge and Information Visualization. LNCS, vol. 3426, pp. 167–182. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  16. 16.
    Ziemkiewicz, C., Kosara, R.: Implied Dynamics in Information Visualization. In: ACM Proceedings of the International Conference on Advanced Visual Interfaces, pp. 215–222 (2010)Google Scholar
  17. 17.
    Zhang, J., Zhong, D., Zhang, J.: Knowledge Visualization; an effective way to improve learning. In: IEEE Education Technology and Computer Science ETCS 2010 Second International Workshop, vol. 1, pp. 598–601 (2010)Google Scholar
  18. 18.
    Dillenbourg, P., Betrancourt, M.: Collaboration Load. In: Elen, E.J., Clark, R.E. (eds.) Dealing with Complexity in Learning Environments, pp. 142–163 (2006)Google Scholar
  19. 19.
    Akrani, G.: Decision Making Proces. In: Management - Problem Solving. Study Notes in Education and Management (2010)Google Scholar
  20. 20.
    Agrawala, M., Li, W., Berthouzoz, F.: Design Principles for Visual Communication. Communications of the ACM 54(4), 60–69 (2011)CrossRefGoogle Scholar
  21. 21.
    John, H., Sallam, R.L., Richardson, J.: Magic Quadrat for business intelligence platforms. In: Gartner for Business Leaders (February 2012)Google Scholar
  22. 22.
    Card, S.K., Mackinlay, J.D., Schneiderman, B.: Information Visualization: Using Vision To Think. Morgan Kaufmann, San Francisco (1999)Google Scholar
  23. 23.
    Schwartz, D.G.: Encyclopedia of Knowledge Management. IGI Global (2005)Google Scholar
  24. 24.
    10 years of Knowledge-Communication.Org; Results, Insights and Perspectives, http://issuu.com/mcminstitute/docs
  25. 25.
    Resources of Information Visualization, http://www.infovis.org/
  26. 26.
    Beyond the Podium: Delivering Training and Performance to a Digital World, http://www.jbp.com
  27. 27.

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Suraya Ya’acob
    • 1
  • Nazlena Mohamad Ali
    • 2
  • Norshita Mat Nayan
    • 2
  1. 1.Public Service Department of MalaysiaUniversiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Institut of Visual InformaticsUniversiti Kebangsaan MalaysiaBangiMalaysia

Personalised recommendations