Advertisement

Performances of Invariant Feature Detectors in Real-Time Video Applications

  • M. Hedayati
  • W. Mimi Diyana
  • W. Zaki
  • Aini Hussain
  • Mohd. Asyraf Zulkifley
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

This paper reviews and compares the performance of five well-known detectors, SIFT, SURF, ORB, MSER and STAR, when combined in combination of with using three common descriptors, SIFT, SURF and ORB. To validate the results, these descriptors’ performances are verified using three scenarios that differ with respect to changes in scale, light variation and rotation. The results show that the SIFT and SURF detectors possess the most stable features, with an overall accuracy of 80% under various conditions. Among the tested descriptors, SURF provides the best description of each keypoint.

Keywords

SIFT SURF ORB MSER 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Li, J., Allinson, N.: A comprehensive review of current local features for computer vision. Neurocomputing 71(10-12), 1771–1787 (2008)CrossRefGoogle Scholar
  2. 2.
    Freeman, W.T., Adelson, E.H.: The Design and Use of Steerable Filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)CrossRefGoogle Scholar
  3. 3.
    Lowe, D.G.: Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded Up Robust Features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Ke, Y., Sukthankar, R.: PCA-SIFT: a more distinctive representation for local image descriptors. In: 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 506–513 (2004)Google Scholar
  6. 6.
    Leung, T., Malik, J.: Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons. Int. J. Comput. Vision 43(1), 29–44 (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Florack, L.M.J., et al.: General intensity transformations and differential invariants. Journal of Mathematical Imaging and Vision 4, 171–181 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yan, B., Shi, F., Yue, J.: An Improved Image Corner Matching Approach. In: Huang, D.-S., Bevilacqua, V., Figueroa, J.C., Premaratne, P. (eds.) ICIC 2013. LNCS, vol. 7995, pp. 472–481. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Harris, C., Stephens, M.: A Combined Corner and Edge Detection. In: Proceedings of the Fourth Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  10. 10.
    Mikolajczyk, K., et al.: A Comparison of Affine Region Detectors. Int. J. Comput. Vision 65(1-2), 43–72 (2005)CrossRefGoogle Scholar
  11. 11.
    Moravec, H.: Obstacle Avoidance and Navigation in the Real World by a Seeing Robot Rover, tech. report CMU-RI-TR-80-03, Robotics Institute, Carnegie Mellon University & doctoral dissertation, Stanford University (1980)Google Scholar
  12. 12.
    Lindeberg, T.: Scale-space Theory: A Basic Tool for Analysing Structures at Different Scales. J. of Applied Statistics 21(2), 224–270 (1994)Google Scholar
  13. 13.
    Witkin, A.P.,: Scale-space Filtering. In: Proceedings of the Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 1019–1022 (1983)Google Scholar
  14. 14.
    Klinger, A.: Patterns and Search Statistics. In: Rustagi, J.S. (ed.) Optimizing Methods in Statistics. Academic Press, New York (1971)Google Scholar
  15. 15.
    Lindeberg, T.: Scale-space Theory: A Framework for Handling Image Structures at Multiple Scales. CERN School of Computing, Egmond aan Zee (1996)Google Scholar
  16. 16.
    Koenderink, J.: The Structure of Images. Biological Cybernetics 50(5), 363–370 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Devernay, F.: A Non-Maxima Suppression Method for Edge Detection with Sub-Pixel Accuracy, Institut National De Recherche En Informatique Et En Automatique (1995)Google Scholar
  18. 18.
    Lowe, D.G.: Object Recognition from Local Scale-Invariant Features. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1150–1157 (1999)Google Scholar
  19. 19.
    Taylor, S., Drummond, T.: Binary Histogrammed Intensity Patches for Efficient and Robust Matching. Int. J. Comput. Vision 94(2), 241–265 (2011)CrossRefGoogle Scholar
  20. 20.
    Viola, P., Jones, M.: Rapid Object Detection Using a Boosted Cascade of Simple Features. In: 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 511–518 (2001)Google Scholar
  21. 21.
    Mikolajczyk, K., Schmid, C.: Scale & Affine Invariant Interest Point Detectors. Int. J. Comput. Vision 60(1), 63–86 (2004)CrossRefGoogle Scholar
  22. 22.
    Zhuping, W., et al.: An Affine Invariant Feature Detection Method Based on SIFT and MSER. In: 2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), pp. 69–72 (2012)Google Scholar
  23. 23.
    Mainali, P., et al.: SIFER: Scale-Invariant Feature Detector with Error Resilience. International Journal of Computer Vision 104(2), 172–197 (2013)CrossRefGoogle Scholar
  24. 24.
    Brown, M., Lowe, D.: Invariant Features from Interest Point Groups (2002)Google Scholar
  25. 25.
    Agrawal, M., Konolige, K., Blas, M.R.: CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part IV. LNCS, vol. 5305, pp. 102–115. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  26. 26.
    Matas, J., et al.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference, vol. 1, pp. 384–393 (2002)Google Scholar
  27. 27.
    Kristensen, F., Maclean, W.J.: Real-Time Extraction of Maximally Stable Extremal Regions on an FPGA. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, pp. 165–168 (2007)Google Scholar
  28. 28.
    Rublee, E., et al.: ORB: An Efficient Alternative to SIFT or SURF. In: International Conference on Computer Vision (2011)Google Scholar
  29. 29.
    Trajkovic, M., Hedley, M.: Fast Corner Detection. Image and Vision Computing 16(2), 75–87 (1998)CrossRefGoogle Scholar
  30. 30.
    Rosin, P.L.: Measuring Corner Properties. Computer Vision and Image Understanding, 291–307 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • M. Hedayati
    • 1
  • W. Mimi Diyana
    • 1
  • W. Zaki
    • 1
  • Aini Hussain
    • 1
  • Mohd. Asyraf Zulkifley
    • 1
  1. 1.Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built EnvironmentUniversiti Kebangsaan MalaysiaMalaysia

Personalised recommendations