Advertisement

Segmentation of the Lung Anatomy for High Resolution Computed Tomography (HRCT) Thorax Images

  • Norliza Mohd Noor
  • Omar Mohd Rijal
  • Joel Than Chia Ming
  • Faizol Ahmad Roseli
  • Hossien Ebrahimian
  • Rosminah M. Kassim
  • Ashari Yunus
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

In diagnosing interstitial lung disease (ILD) using HRCT Thorax images, the radiologists required to view large volume of images (30 slices scanned at 10 mm interval or 300 slices scanned at 1 mm interval). However, in the development of scoring index to assess the severity of the disease, viewing 3 to 5 slices at the predetermined levels of the lung is suffice for the radiologist. To develop an algorithm to determine the severity of the ILD, it is important for the computer aided system to capture the main anatomy of the chest, namely the lung and heart at these 5 predetermined levels. In this paper, an automatic segmentation algorithm is proposed to obtain the shape of the heart and lung. In determine the quality of the segmentation, ground truth or manual tracing of the lung and heart boundary done by senior radiologist was compared with the result from the proposed automatic segmentation. This paper discussed five segmentation quality measurements that are used to measure the performance of the proposed segmentation algorithm, namely, the volume overlap error rate (VOE), relative volumetric agreement (RVA), average symmetric surface distance (ASSD), root mean square surface distance (RMSD) and Hausdorff distance (HD). The results showed that the proposed segmentation algorithm produced good quality segmentation for both right and left lung and may be used in the development of computer aided system application.

Keywords

Interstitial lung disease high resolution computed tomography (HRCT) segmentation quality 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gulatia, M.: Diagnostic assessment of patients with interstitial lung disease. Prim. Care Respir. J. 20(2), 120–127 (2011)CrossRefGoogle Scholar
  2. 2.
    Bjorker, A., Ryu, J.H., Edwin, M.K., Myers, J.L., Tazelaar, H.D., Schroeder, D.R., Offord, K.P.: Prognostic significance of histopathologic subsets in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 157(1), 199–203 (1998)CrossRefGoogle Scholar
  3. 3.
    Arzhaeva, Y., et al.: Computer-aided detection of interstitial abnormalities in chest radiographs using a reference standard based on computed tomography. Med. Phys. 34, 4798–4809 (2007)CrossRefGoogle Scholar
  4. 4.
    Raghu, G., Brown, K.K.: Interstitial Lung Disease: Clinical evaluation and keys to an accurate diagnosis. Clinical Chest Med. 25, 409–419 (2004)CrossRefGoogle Scholar
  5. 5.
    Nakashini, M., Demura, Y., Mizuno, S., Ameshima, S., Chiba, Y., Miyamori, I., Itoh, H., Kitaichi, M., Ishizaki, T.: Changes in HRCT findings in patients with respiratory bronchiolitis-associated interstitial lung disease after smoking cessation. European Respiratory Journal 29(3), 453–461 (2007)CrossRefGoogle Scholar
  6. 6.
    Heimann, T., Van Ginneken, B., Styner, M.A., Aurich, Y., Bauer, C., Becker, C., Beichel, R., Bekes, G., et al.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Medical Imaging 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  7. 7.
    Gletsos, M., Mougiakakou, S.G., Matsopoulos, G.K., Nikita, K.S., Nikita, A., Kelekis, D.: A computer-aided diagnostic system to characterize CT focal liver lesions: Design and optimization of a neural network classifier. IEEE Trans. Inf. Technol. Biomed. 7(3), 153–162 (2003)CrossRefGoogle Scholar
  8. 8.
    Rangayyan, R.M., Vu, R.H., Boag, G.S.: Automatic delineation of the diaphragm in computed tomographic images. Journal of Digital Imaging 21, 134–147 (2008)CrossRefGoogle Scholar
  9. 9.
    Kainmüller, D., Lange, T., Lamecker, H.: Shape constrained automatic segmentation of the liver based on a heuristic intensity model. In: Proc. MICCAI Workshop 3-D Segmentation Clinic: A Grand Challenge, pp. 109–116 (2007)Google Scholar
  10. 10.
    Heimann, T., Meinzer, H.-P., Wolf, I.: A statistical deformable model for the segmentation of liver CT volumes. In: Proc. MICCAI Workshop 3-D Segmentation in the Clinic: A Grand Challenge, pp. 161–166 (2007)Google Scholar
  11. 11.
    Saddi, K.A., Rousson, M., Chefd’hotel, C., Cheriet, F.: Global-to-local shape matching for liver segmentation in CT imaging. In: Proc. MICCAI Workshop 3-D Segmentation Clinic: A Grand Challenge, pp. 207–214 (2007)Google Scholar
  12. 12.
    Lim, S.J., Jeong, Y.Y., Ho, Y.S.: Automatic liver segmentation for volume measurement in CT images. Journal of Visual Communication and Image Representation 17(4), 860–875 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Norliza Mohd Noor
    • 1
  • Omar Mohd Rijal
    • 2
  • Joel Than Chia Ming
    • 1
  • Faizol Ahmad Roseli
    • 2
  • Hossien Ebrahimian
    • 2
  • Rosminah M. Kassim
    • 3
  • Ashari Yunus
    • 4
  1. 1.UTM Razak School of Engineering and Advanced TechnologyUniversiti Teknologi MalaysiaKuala LumpurMalaysia
  2. 2.Institute of Mathematical SciencesUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Diagnostic ImagingKuala Lumpur HospitalMalaysia
  4. 4.Institute of Respiratory MedicineMalaysia

Personalised recommendations