Advertisement

Enhancing an Automated Inspection System on Printed Circuit Boards Using Affine-SIFT and TRIZ Techniques

  • Amirhossein Aghamohammadi
  • Mei Choo Ang
  • Anton Satria Prabuwono
  • Marzieh Mogharrebi
  • Kok Weng Ng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8237)

Abstract

Automated visual inspection is an important step to assure the quality of printed circuit boards (PCB). Component placement errors such as missing, misaligned or incorrectly rotated component are major causes of defects on surface mount PCB. This paper proposes a novel automated visual inspection method for PCB. The proposed method uses a sequence of image processing techniques inspired by the theory of inventive problem solving (TRIZ) with Affine-SIFT image matching techniques to enhance the component placement inspection. Only analytic discussions are presented in this paper to support the potential of the proposed method.

Keywords

automated visual inspection printed circuit board image matching affine-sift theory of inventive problem solving 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chuang, S.-F., Chang, W.-T., Lin, C.-C., Tarng, Y.-S.: Misalignment inspection of multilayer PCBs with an automated X-ray machine vision system. The International Journal of Advanced Manufacturing Technology 51, 995–1008 (2010)CrossRefGoogle Scholar
  2. 2.
    Perng, D.-B., Liu, H.-W., Chang, C.-C.: Automated SMD LED inspection using machine vision. The International Journal of Advanced Manufacturing Technology 57, 1065–1077 (2011)CrossRefGoogle Scholar
  3. 3.
    Zeng, Z., Ma, L.Z., Zheng, Z.Y.: Automated extraction of PCB components based on specularity using layered illumination. Journal of Intelligent Manufacturing 22, 919–932 (2011)CrossRefGoogle Scholar
  4. 4.
    Wu, C.-H., Wang, D.-Z., Ip, A., Wang, D.-W., Chan, C.-Y., Wang, H.-F.: A particle swarm optimization approach for components placement inspection on printed circuit boards. Journal of Intelligent Manufacturing 20, 535–549 (2009)CrossRefGoogle Scholar
  5. 5.
    Chu, C., Wang, C., Jiang, B.: An Automatic Image Enhancement Framework for Industrial Products Inspection. In: Proceedings of the Institute of Industrial Engineers Asian Conference, pp. 73–78. Springer (2013)Google Scholar
  6. 6.
    Mogharrebi, M., Prabuwono, A.S., Sahran, S., Aghamohammadi, A.: Missing Component Detection on PCB Using Neural Networks. In: Zheng, D. (ed.) Advances in Electrical Engineering & Electrical Machines. LNEE, vol. 134, pp. 387–394. Springer, Heidelberg (2012)Google Scholar
  7. 7.
    Mar, N.S.S., Yarlagadda, P., Fookes, C.: Design and development of automatic visual inspection system for PCB manufacturing. Robotics and Computer-Integrated Manufacturing 27, 949–962 (2011)CrossRefGoogle Scholar
  8. 8.
    Ang, M.C., Pham, D.T., Soroka, A.J., Ng, K.W.: PCB assembly optimisation using the Bees Algorithm enhanced with TRIZ operators. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2708–2713 (2010)Google Scholar
  9. 9.
    Altshuller, G.: The innovation algorithm: TRIZ, systematic innovation and technical creativity. Technical Innovation Ctr, Worcester (1999)Google Scholar
  10. 10.
    Ahmad, S.A., Pham, D.T., Ng, K.W., Ang, M.C.: TRIZ-inspired Asymmetrical Search Neighborhood in the Bees Algorithm. In: 2012 Sixth Asia Modelling Symposium (AMS). IEEE (2012)Google Scholar
  11. 11.
    Yu, G., Morel, J.-M.: A fully affine invariant image comparison method. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2009. IEEE (2009)Google Scholar
  12. 12.
    Newcombe, R.A., Davison, A.J.: Live dense reconstruction with a single moving camera. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2010)Google Scholar
  13. 13.
    Ta, D.-N., Chen, W.-C., Gelfand, N., Pulli, K.: SURFTrac: Efficient tracking and continuous object recognition using local feature descriptors. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2009. IEEE (2009)Google Scholar
  14. 14.
    Doubek, P., Matas, J., Perdoch, M., Chum, O.: Image matching and retrieval by repetitive patterns. In: 2010 20th International Conference on Pattern Recognition (ICPR). IEEE (2010)Google Scholar
  15. 15.
    Morel, J., Yu, G.: Is SIFT scale invariant? Inverse Problems and Imaging 5, 115–136 (2011)CrossRefzbMATHGoogle Scholar
  16. 16.
    Morel, J.-M., Yu, G.: ASIFT: A new framework for fully affine invariant image comparison. SIAM Journal on Imaging Sciences 2, 438–469 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Lowe, D.G.: Object recognition from local scale-invariant features. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE (1999)Google Scholar
  18. 18.
    Oji, R.: An Automatic Algorithm for Object Recognition and Detection Based on ASIFT Keypoints, arXiv preprint arXiv:1211.5829 (2012)Google Scholar
  19. 19.
    Yu, G., Morel, J.-M.: ASIFT: An Algorithm for Fully Affine Invariant Comparison. Image Processing On Line (2011)Google Scholar
  20. 20.
    Su, Y.-Y., Srihari, K.: Placement sequence identification using artificial neural networks in surface mount PCB assembly. The International Journal of Advanced Manufacturing Technology 11, 285–299 (1996)CrossRefGoogle Scholar
  21. 21.
    Dong, N., Wu, C.-H., Ip, W.-H., Chen, Z.-Q., Yung, K.-L.: Chaotic species based particle swarm optimization algorithms and its application in PCB components detection. Expert Systems with Applications (2012)Google Scholar
  22. 22.
    Wu, H., Kuang, Y., Ouyang, G., Xie, H., Zhang, X.: Optimize Position and Path Planning of Automated Optical Inspection. Journal of Computational Information Systems 8, 2957–2963 (2012)Google Scholar
  23. 23.
    Dong, Z.-J., Ye, F., Li, D., Huang, J.-X.: PCB matching based on SURF. Circuit World 38, 153–162 (2012)Google Scholar
  24. 24.
    Crispin, A., Rankov, V.: Automated inspection of PCB components using a genetic algorithm template-matching approach. The International Journal of Advanced Manufacturing Technology 35, 293–300 (2007)CrossRefGoogle Scholar
  25. 25.
    Cho, H.-J., Park, T.-H.: Wavelet transform based image template matching for automatic component inspection. The International Journal of Advanced Manufacturing Technology 50, 1033–1039 (2010)CrossRefGoogle Scholar
  26. 26.
    Wu, C., Dong, N., Ip, W., Chen, Z., Yung, K.: Applying Chaotic Particle Swarm Optimization to the Template Matching Problem. In: Cai, Z., Li, Z., Kang, Z., Liu, Y. (eds.) ISICA 2009. LNCS, vol. 5821, pp. 411–421. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  27. 27.
    Xie, F., Uitdenbogerd, A., Song, A.: Detecting PCB component placement defects by genetic programming. In: Congress on Evolutionary Computation (CEC), pp. 1138–1145. IEEE (2013)Google Scholar
  28. 28.
    Jean, M.M., Guoshen, Y.: SIFT and ASIFT — online demo: try if your images match! (2011), http://www.cmap.polytechnique.fr/~yu/research/ASIFT/demo.html, http://demo.ipol.im/demo/my_affine_sift/

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Amirhossein Aghamohammadi
    • 1
  • Mei Choo Ang
    • 1
  • Anton Satria Prabuwono
    • 2
  • Marzieh Mogharrebi
    • 1
  • Kok Weng Ng
    • 3
  1. 1.Institute of Visual Informatics (IVI)National University of Malaysia (UKM)Malaysia
  2. 2.Faculty of Information Science and TechnologyNational University of Malaysia (UKM)Malaysia
  3. 3.Design Engineering SectionIndustrial Design CentreMalaysia

Personalised recommendations