Skip to main content

Towards Optimized Complexity: Integrating Intermittency

  • Chapter
  • First Online:
Energy in Australia

Part of the book series: SpringerBriefs in Energy ((ENERGYANALYS))

  • 1494 Accesses

Abstract

Much of the discussion of renewable energy is posited on the ideals of the “soft energy path”, sustainability, localization, and simplification. Yet when these ideals are unpacked, it becomes clear that realizing them will require a radical increase in complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcott B. Jevons’ paradox. Ecol Econ. 2005;54(1):9–21.

    Article  Google Scholar 

  • Alcott B. The sufficiency strategy: would rich-world frugality lower environmental impact? Ecol Econ. 2008;64(4):770–86.

    Article  Google Scholar 

  • Alcott B. Impact caps: why population, affluence and technology strategies should be abandoned. J Cleaner Prod. 2009;18:552–60.

    Article  Google Scholar 

  • Alcott B. Mill’s scissors: structural change and the natural-resource inputs to labour. J Cleaner Prod. 2012;21(1):83–92.

    Article  Google Scholar 

  • Anderson G. Dynamics and control of electric power systems. Zurich: Swiss Federal Institute of Technology; 2012.

    Google Scholar 

  • Archer CL, Jacobson MZ. Supplying baseload power and reducing transmission requirements by interconnecting wind farms. J Appl Meteorol Climatol. 2007;46(11):1701–17.

    Article  Google Scholar 

  • Australian Energy Market Operator (AEMO). 100 percent renewables study: modelling outcomes. Melbourne: 2013.

    Google Scholar 

  • Australian Energy Market Operator (AEMO). Technical guide to the wholesale market: 000-0264. Melbourne: AEMO; 2010.

    Google Scholar 

  • Australian Productivity Commission. Electricity network regulatory frameworks report. Canberra: Productivity Commission; 2013.

    Google Scholar 

  • Bindner H. Power control for wind turbines in weak grids: concepts development. Roskilde: Risø; 1999.

    Google Scholar 

  • Blackburn TR. Distribution transformers: proposal to increase MEPS levels. Sydney: Prepared for Energy Efficiency Program; 2007.

    Google Scholar 

  • Bower W, Gonzalez S, Akhil A, Kuszmaul S, Sena-Henderson L, David C, Reedy R. Solar energy grid integration systems: final report of the Florida Solar Energy Center Team. Albuquerque: Sandia National Laboratories; 2012.

    Google Scholar 

  • Budischak C, Sewell D, Thomson H, Mach L, Veron DE, Kempton W. Cost-minimized combinations of wind power, solar power and electrochemical storage, powering the grid up to 99.9 % of the time. J Power Sources. 2012.

    Google Scholar 

  • Burger B. Electricity production from solar and wind in Germany in 2012. Freiburg: Fraunhofer Institute for Solar Energy Systems ISE; 2013.

    Google Scholar 

  • Cleveland CJ, Saundry P. Ten fundamental principles of net energy. Environ Inf Coalition. 2007.

    Google Scholar 

  • Consulting ROAM. Solar generation Australian market modelling. Brisbane: ROAM; 2012.

    Google Scholar 

  • Costanza R. Embodied energy and economic valuation. Science. 1980;210(4475):1219–24.

    Article  Google Scholar 

  • Crist P. Electric vehicles revisited: costs, subsidies and prospects. Discussion paper No. 2012-03; 2012.

    Google Scholar 

  • Delucchi MA, Jacobson MZ. Providing all global energy with wind, water, and solar power, part II: reliability, system and transmission costs, and policies. Energy Policy. 2011;39(3):1170–90.

    Article  Google Scholar 

  • Diesendorf M. Greenhouse solutions with sustainable energy. Sydney: UNSW Press; 2007a.

    Google Scholar 

  • Diesendorf M. The base load fallacy. Energy Sci Briefing Pap. 2007b; 16.

    Google Scholar 

  • Eadie L, Elliott C. Going solar: renewing Australia’s electricity options. 2013.

    Google Scholar 

  • Ekins P, Kesicki F, Smith AZP. Marginal abatement cost curves: a call for caution. London: University College London; 2011.

    Google Scholar 

  • Electric Power Research Institute. Australian electricity generation technology costs: reference case 2010. Canberra: Australian Department of Resources, Energy and Tourism; 2010.

    Google Scholar 

  • Electricity Supply Industry Expert Panel. Technical parameters of the Tasmanian electricity supply system: information paper. Hobart: Tasmanian Government; 2011.

    Google Scholar 

  • Elliston B, Diesendorf M, MacGill I. Simulations of scenarios with 100 % renewable electricity in the Australian National Electricity Market. Energy Policy. 2012;45:606–13.

    Article  Google Scholar 

  • Frondel M, Ritter N, Schmidt CM, Vance C. Economic impacts from the promotion of renewable energy technologies: the German experience. Energy Policy. 2010;38(8):4048–56.

    Article  Google Scholar 

  • Garnaut R. The Garnaut climate change review: final report. Canberra: Department of Climate Change and Energy Efficiency; 2008.

    Google Scholar 

  • Gavankar S, Geyer R. The rebound effect: state of the debate and implications for energy efficiency research. Bren School Environ Sci Manage. 2010.

    Google Scholar 

  • Green R. How Denmark manages its wind power. IAEE Energy Forum, 3rd Quarter. 2012: 9–11.

    Google Scholar 

  • Halliday C, Urquart D. Voltage and equipment standards misalignment. Canberra: The Electric Energy Society of Australia; 2011.

    Google Scholar 

  • Inhaber H. Why wind power does not deliver the expected emissions reductions. Renew Sustain Energy Rev. 2011;15(6):2557–62.

    Article  Google Scholar 

  • Institute for Energy Research. Levelized cost of new electricity generating technologies. 2012.Available online:http://www.instituteforenergyresearch.org/2011/02/01/levelized-cost-of-new-electricity-generating-technologies/. Accessed 1 Jan 2013.

  • International Energy Agency (IEA). Key world energy statistics: 2012. Paris: IEA; 2012.

    Google Scholar 

  • International Energy Agency (IEA). Technology roadmap: smart grids. Paris: IEA; 2011.

    Google Scholar 

  • International Panel on Climate Change (IPCC). IPCC special report on emissions scenarios for COP 6, part 3.1. Introduction. GRID-Arendal. 2000. Available online: http://www.grida.no/publications/other/ipcc%5Fsr/?src=/climate/ipcc/emission/050.htm. Accessed 1 Jan 2013.

  • Kaffine DT, McBee BJ, Lieskovsky J. Emissions savings from wind power generation: evidence from Texas, California, and the Upper Midwest. 2011.

    Google Scholar 

  • Kemp M. Zero Carbon Britain 2030: a new energy strategy. The second report of the Zero Carbon Britain project. Powys: Centre for Alternative Technology; 2010.

    Google Scholar 

  • Lund H, Kempton W. Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy. 2008;36(9):3578–87.

    Article  Google Scholar 

  • Maxwell D, Owen P, McAndrew L, Muehmel K, Neubauer A. Addressing the rebound effect. Eur Comm DG Environ. 2011.

    Google Scholar 

  • Michaels R, Murphy RP. Green jobs: fact or fiction. Institute for Energy Research: 2009.

    Google Scholar 

  • Palmer G. Does energy efficiency reduce emissions and peak demand? A case study of 50 years of space heating in Melbourne. Sustainability. 2012;4(7):1525–60.

    Article  Google Scholar 

  • Palmer G. Household solar photovoltaics: supplier of marginal abatement, or primary source of low-emission power? Sustainability. 2013;5(4):1406–42.

    Article  MathSciNet  Google Scholar 

  • PE International. Life cycle CO2e assessment of low carbon cars 2020–2030. Low Carbon Vehicle Partnership: 2012.

    Google Scholar 

  • Raupach MR, Marland G, Ciais P, Le Quéré C, Canadell JG, Klepper G, Field CB. Global and regional drivers of accelerating CO2 emissions. Proc Natl Acad Sci. 2007;104(24):10288–93.

    Article  Google Scholar 

  • Sandiford M. Who’s afraid of solar PV? The conversation. 2012. Available online: http://theconversation.edu.au/whos-afraid-of-solar-pv-8987. Accessed 1 Jan 2013.

  • Sayeef S, Heslop S, Cornforth D, Moore T, Percy S, Ward JK, Berry A, Rowe D. Solar intermittency: Australia’s clean energy challenge: characterising the effect of high penetration solar intermittency on Australian electricity networks. Sydney: CSIRO; 2012.

    Google Scholar 

  • Simshauser P, Downer D. Dynamic pricing and the peak electricity load problem. Aust Econ Rev. 2012;45(3):305–24.

    Article  Google Scholar 

  • SKM MMA. Garnaut climate change review update 2011: advice on change in merit order of brown coal fired stations. Melbourne: SKM MMA; 2011.

    Google Scholar 

  • Smil V. Creating the twentieth century: technical innovations of 1867–1914 and their lasting impact. New York: Oxford University Press; 2005.

    Book  Google Scholar 

  • Sorrell S. Energy, economic growth and environmental sustainability: five propositions. Sustainability. 2010;2:1784–809.

    Article  Google Scholar 

  • Sovacool BK. The intermittency of wind, solar, and renewable electricity generators: technical barrier or rhetorical excuse? Utilities Policy. 2009;17(3):288–96.

    Article  Google Scholar 

  • Tainter J. The collapse of complex societies. Cambridge University Press: 1990.

    Google Scholar 

  • Tasmania Department of Infrastructure Energy and Resources. Submission to National Electricity Amendment (network support and control ancillary services) rule 2010 [ERC 0108]. Hobart: Tasmania DIER; 2010.

    Google Scholar 

  • Teske S. Energy [R]evolution: a sustainable world energy outlook. 3rd ed. Hamburg: Greenpeace International, European Renewable Energy Council; 2010.

    Google Scholar 

  • Trainer T. Can renewables etc. solve the greenhouse problem? The negative case. Energy Policy. 2010;38(8):4107–14.

    Article  Google Scholar 

  • Trainer T. A critique of Jacobson and Delucci’s proposals for a world renewable energy supply. Energy Policy. 2012;44:476–81.

    Article  Google Scholar 

  • Trainer T. 100 % Renewable supply? Comments on the reply by Jacobson and Delucchi to the critique by Trainer. Energy Policy. 2013.

    Google Scholar 

  • United Nations. Multidimensional issues in international electric power grid interconnections. New York: 2006.

    Google Scholar 

  • US Energy Information Administration (EIA). Levelized cost of new generation resources in the annual energy outlook 2012. Washington, DC: EIA; 2012.

    Google Scholar 

  • Wood T. The future of gas power: stepping stone or snare? The conversation. 2012. Available online:http://theconversation.edu.au/the-future-of-gas-power-stepping-stone-or-snare-4575. Accessed 1 Jan 2013.

  • Wright M, Hearps P. Australian sustainable energy: Zero carbon Australia stationary energy plan. Melbourne: Melbourne Energy Research Institute; 2010.

    Google Scholar 

  • WWF. The energy report: 100 % renewable energy by 2050. Gland: WWF; 2011.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Graham Palmer .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Graham Palmer

About this chapter

Cite this chapter

Palmer, G. (2014). Towards Optimized Complexity: Integrating Intermittency. In: Energy in Australia. SpringerBriefs in Energy(). Springer, Cham. https://doi.org/10.1007/978-3-319-02940-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02940-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-02939-9

  • Online ISBN: 978-3-319-02940-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics