Advertisement

In-Situ Robotic Fabrication: Advanced Digital Manufacturing Beyond the Laboratory

  • Volker HelmEmail author
  • Jan Willmann
  • Fabio Gramazio
  • Matthias Kohler
Conference paper
  • 1.2k Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 94)

Abstract

This paper takes an important step in characterizing a novel field of architectural research where a robotic system moves on a construction site and positions building components in-situ. Developed by the research group of Gramazio & Kohler at ETH Zurich, this approach offers unique advantages over traditional building technology: it fosters non-standard building processes, it can be directly applied on the construction site and it is easily scalable and it offers digital integration and informational oversight across the entire design and building process. Featuring a comprehensive new approach to architecture and technology, this paper considers 1) research parameters and components of in-situ robotic fabrication (such as tolerance handling, man-machine cooperation and localisation), 2) experimentation and building prototypes at full architectural scale, and 3) the architectural implications of integrating these findings into a systemic, unifying process at the earliest stages of design. As a result, in-situ robotic fabrication opens up entirely new possibilities of automated construction that are not limited by the constraints of prefabrication; the most evident and radical consequences of in-situ robotic fabrication are the ability to digitally oversee and control a large number of aspects of design and fabrication within an efficient and flexible building process.

Keywords

In-situ automated construction additive fabrication robotic manufacturing computational design non-standard architectural structures digital integration tolerance handling human-machine- interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture, pp. 8–11. Lars Müller Publishers, Baden (2008)Google Scholar
  2. 2.
    Bonwetsch, T., Gramazio, F., Kohler, M.: R-O-B: Towards a Bespoke Building Process. In: Sheil, B. (ed.) Manufacturing the Bespoke: Making and Prototyping Architecture, pp. 78–87. John Wiley & Sons, London (2012)Google Scholar
  3. 3.
    Bonwetsch, T.: The Informed Wall: Applying additive digital fabrication techniques on architecture. In: ACADIA 2006: Synthetic Landscapes. Proceedings of the 25th Annual Conference for the Association for Computer-Aided Design in Architecture, Louisville, p. 489 (2006)Google Scholar
  4. 4.
    Burry, J.: Philosophy of Mathematics for Computational Design: Spatial Intuition Versus Logic. In: Menges, A., Ahlquist, S. (eds.) Computational Design Thinking, pp. 168–178. John Wiley & Sons, West Sussex (2011)Google Scholar
  5. 5.
    Bonwetsch, T., Gramazio, F., Kohler, M.: Digitales Handwerk. In: GAM 2006, Nonstandard Structures, Graz, pp. 172–179 (2010)Google Scholar
  6. 6.
    Willmann, J., Kohler, M., Gramazio, F.: Die Operationalitt von Daten und Material im Digitalen Zeitalter. In: Hofmeister, S., Hellstern, C. (eds.) Positionen zur Zukunft des Bauens. Edition DETAIL/Institut fuer int, pp. 10–11. Architektur-Dokumentation, Munich (2011)Google Scholar
  7. 7.
    Helm, V., Ercan, S., Gramazio, F., Kohler, M.: In-Situ Robotic Construction: Extending the Digital Fabrication Chain in Architecture. In: Synthetic Digital Ecologies: Proceedings of the 32nd Annual Conference of the Association for Computer Aided Design in Architecture, San Francisco, pp. 169–176 (2012)Google Scholar
  8. 8.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture, p. 9. Lars Müller Publishers, Baden (2008)Google Scholar
  9. 9.
    Willmann, J., Kohler, M., Gramazio, F.: Roboterbasiertes Bauen, Architektur und digitale Fabrikation. Deutsche Bauzeitschrift 11(60), 56–59 (2012)Google Scholar
  10. 10.
    Willmann, J., Kohler, M., Gramazio, F.: Digital by Material: Towards an Extended Material Performance in Architecture. In: Robotic Fabrication in Architecture, Art and Design, RobArch 2012, pp. 12–27. Springer, Vienna (2012)Google Scholar
  11. 11.
    Helm, V., Ercan, S., Gramazio, F., Kohler, M.: Mobile Robotic Fabrication on Construction Sites. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 4335–4341 (2012)Google Scholar
  12. 12.
    Gramazio, F., Kohler, M.: Digital Materiality in Architecture: Bridging the Realms of the Virtual and Physical. In: Geiser, R. (ed.) Explorations in Architecture, pp. 179–199. Birkhäuser, Basel (2008)Google Scholar
  13. 13.
    Andres, J., Bock, T., Gebhart, F.: First results of the development of the masonry robot system ROCCO. In: Proceedings of the 11th International Symposium on Automation and Robotics in Construction, Brighton, pp. 87–93 (1994)Google Scholar
  14. 14.
    Dalacker, M.: Schriftenreihe Planung, Technologie, Management und Automatisierung im Bauwesen. In: Bock, T. (ed.) Entwurf und Erprobung Eines Mobilen Roboters zur Automatisierten Erstellung von Mauerwerk auf der Baustelle, Band 1, Stuttgart (1997)Google Scholar
  15. 15.
    Bonwetsch, T., Gramazio, F., Kohler, M.: R-O-B: Towards a Bespoke Building Process. In: Sheil, B. (ed.) Manufacturing the Bespoke: Making and Prototyping Architecture, pp. 80–83. John Wiley & Sons, London (2012)Google Scholar
  16. 16.
    Schodek, D., Bechthold, M., Griggs, K., Kao, K., Steinberg, M.: Digital Design and Manufacturing: CAD/CAM Applications in Architecture. John Wiley & Sons, New York (2004)Google Scholar
  17. 17.
    Ficca, J.: Inclusion of Performative Surfaces material and fabrication research. In: Iwamoto, L. (ed.) Digital Fabrications: Architectural and Material Techniques. Princeton Architectural Press, New York (2009)Google Scholar
  18. 18.
    Pigram, D., McGee, W.: Formation embedded design: A methodology for the integration of fabrication constraints into architectural design. In: Proceedings of the 31st Annual Conference of the ACADIA, Calgary, pp. 122–131 (2011)Google Scholar
  19. 19.
    Menges, A.: Integrative Design Computation: Integrating Material Behaviour and Robotic Manufacturing Processes in Computational Design for Performative Wood Constructions. In: Proceedings of the 31th Conference of the Association For Computer Aided Design In Architecture (ACADIA), Banff, Canada, pp. 72–81 (2011)Google Scholar
  20. 20.
    Dunn, N.: Digital Fabrication in Architecture, pp. 26–39. Lawrence King Publishers, London (2012)Google Scholar
  21. 21.
    Von Both, P.: Industrialisierung versus Individualisierung: Neue Methoden und Technologien. In: Hofmeister, S., Hellstern, C. (eds.) Positionen zur Zukunft des Bauens. Edition DETAIL/Institut für int, pp. 20–23. Architektur-Dokumentation, Munich (2011)Google Scholar
  22. 22.
    Obayashi, S.: Current Status of Automation and Robotics in Construction in Japan. In: 9th International Symposium, Automation and Robotics in Construction, Tokyo (1992)Google Scholar
  23. 23.
    Willmann, J., Kohler, M., Gramazio, F.: Die Operationalität von Daten und Material im Digitalen Zeitalter. In: Hofmeister, S., Hellstern, C. (eds.) Positionen zur Zukunft des Bauens. Edition DETAIL/Institut für int, pp. 6–19. Architektur-Dokumentation, Munich (2011)Google Scholar
  24. 24.
    Geiser, R. (ed.): Explorations in Architecture, pp. 210–216. Birkhäuser, Basel (2008)Google Scholar
  25. 25.
    Soar, R.: Additive Manufacturing technologies for the Construction Industry. In: Hopkins, N., Hague, R., Dickens, P. (eds.) Rapid Manufacturing: An Industrial Revolution for the Digital Age, pp. 249–273. John Wiley & Sons, London (2006)CrossRefGoogle Scholar
  26. 26.
    Bärtschi, R., Knauss, M., Bonwetsch, T., Gramazio, F., Kohler, M.: The wiggled Brick Bond. In: Ceccato, C., Hesselgren, L., Pauly, M., Pottmann, H., Wallner, J. (eds.) Advances in Architectural Geometry, pp. 137–147. Springer, Wien (2010)CrossRefGoogle Scholar
  27. 27.
    Gramazio, F., Kohler, M.: Die Digitale Materialität in der Architektur. In: Archplus, Issue 198/199, 43 Haus der Zukunft, Berlin, pp. 42–43 (2010)Google Scholar
  28. 28.
    Gramazio, F., Kohler, M.: Digital Materiality. In: Grobman, Y.J., Neuman, E. (eds.) Performalism: Form and Performance in Digital Architecture, pp. 160–169. Routledge, New York (2011)Google Scholar
  29. 29.
    Menges, A.: Material Computation: Higher Integration in Morphogenetic Design. In: Menges, A. (Guest ed.) Material Computation, Architectural Design (AD), vol. 82, pp. 14–21. John Wiley & Sons, London (2012)Google Scholar
  30. 30.
    Helm, V., Ercan, S., Gramazio, F., Kohler, M.: Mobile Robotic Fabrication on Construction Sites. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 4335–4341 (2012)Google Scholar
  31. 31.
    Lupashin, S., Schoellig, A., Sherback, M., Dandrea, R.: A simple learning strategy for high-speed quadrocopter multi-flips. In: IEEE International Conference on Robotics and Automation, Anchorage, pp. 1642–1648 (2010)Google Scholar
  32. 32.
    Willmann, J., Augugliaro, F., Cadalbert, T., Dandrea, R., Gramazio, F., Kohler, M.: Aerial Robotic Construction: Towards a New Field of Architectural Research. International Journal of Architectural Computing 10(3), 439–460 (2012)CrossRefGoogle Scholar
  33. 33.
    Kohler, M.: Aerial Architecture. In: Log 25, Reclaim Resi[lience]stance, New York, pp. 23–30 (2012)Google Scholar
  34. 34.
    Helm, V., Ercan, S., Gramazio, F., Kohler, M.: Mobile Robotic Fabrication on Construction Sites. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 4335–4341 (2012)Google Scholar
  35. 35.
    Sheil, B., Glynn, R. (eds.): Fabricate: Making Digital Architecture. Riverside Architectural Press, Cambridge (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Volker Helm
    • 1
    Email author
  • Jan Willmann
    • 1
  • Fabio Gramazio
    • 1
  • Matthias Kohler
    • 1
  1. 1.Architecture and Digital FabricationDFAB, at Swiss Federal Institute of Technology (ETHZ)ZurichSwitzerland

Personalised recommendations