Advertisement

Psychophysiological Interaction and Empathic Cognition for Human-Robot Cooperative Work (PsyIntEC)

  • Johan HagelbäckEmail author
  • Olle Hilborn
  • Petar Jerčić
  • Stefan J. Johansson
  • Craig A. Lindley
  • Johan Svensson
  • Wei Wen
Conference paper
  • 826 Downloads
Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 94)

Abstract

The aim of the PsyIntEC project is to explore affective and cognitive modeling of humans in human-robot interaction (Hri) as a basis for behavioral adaptation. To achieve this we have explored human affective perception of relevant modalities in human-human and human-robot interaction on a collaborative problem-solving task using psychophysiological measurements. The experiments conducted have given us valuable insight into the communicational and affective queues interplaying in such interactions from the human perspective. The results indicate that there is an increase in both positive and negative emotions when interacting with robots compared to interacting with another human or solving the task alone, but detailed analysis on shorter time segments is required for the results from all sensors to be conclusive and significant.

Keywords

human-robot interaction psychophysiology affective modeling robotics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lucas, E.: Récreations Mathématiques, vol. 3. Gauthier Villars, Paris (1893)zbMATHGoogle Scholar
  2. 2.
    Larsen, J., Berntson, L.G., Poehlmann, K.M., Ito, T., Cacioppo, J.: The Psychophysiology of Emotion. In: Lewis, R., Haviland-Jones, J.M., Barrett, L.F. (eds.) The Handbook of Emotions, 3rd edn. Guilford Press (2008)Google Scholar
  3. 3.
    Janke, L.: Facial EMG in an anger-provoking situation: individual differences in directing anger outwards or inwards. International Journal of Psychophysiology 23(3), 207–214 (1996)CrossRefGoogle Scholar
  4. 4.
    Fridlund, A.J.: Evolution and facial action in reflex, social motive, and paralanguage. Biological Psychology 32(1), 3–100 (1991)CrossRefGoogle Scholar
  5. 5.
    Wu, G., Liu, G., Hao, M.: The analysis of emotion recognition from GSR based on PSO. In: 2010 International Symposium on Intelligence Information Processing and Trusted Computing (2010)Google Scholar
  6. 6.
    Andreassi, J.: Psychophysiology: Human behavior and physiological response, 5th edn. Lawrence Erlbaum Associates Inc., US (2007)Google Scholar
  7. 7.
    Houghton, A.R., Gray, D.: Making sense of the ECG, 3rd edn. Hodder Education (2012)Google Scholar
  8. 8.
    Malmstrom, E., Opton, E., Lazarus, R.: Heart Rate Measurement and the Correlation of Indices of Arousal. Psychosomatic Medicine (1965)Google Scholar
  9. 9.
    Drachen, A., Nacke, L., Yannakakis, G., Pedersen, A.: Correlation Between Heart Rate, Electrodermal Activity and Player Experience in First-Person Shooter games. In: Proceedings of the 5th ACM SIGGRAPH Symposium on Video Games (2010)Google Scholar
  10. 10.
    Ya, X., Guangyuan, L., Min, H., Wanhui, W., Xiting, H.: Analysis of affective ECG signals toward emotion recognition. Journal of Electronics 27(1) (2010)Google Scholar
  11. 11.
    Anderson, C., Sijercic, Z.: Classification of EEG Signals from Four Subjects During Five Mental Tasks. Psychophysiology 16, 202–203 (1979)Google Scholar
  12. 12.
    Ying, N.Y., Saratchandran, P., Huang, G.B., Sundarajan, N.: Classification of Mental Tasks from EEG Signals using Extreme Learning Machine. International Journal of Neural Systems 16, 29–39 (2006)CrossRefGoogle Scholar
  13. 13.
    Petrantonakis, P.C., Hadjileontiadis, L.J.: Emotion Recognition from Brain Signals Using Hybrid Adaptive Filtering and Higher Order Crossings Analysis. IEEE Transactions on Affective Computing 1, 81–97 (2010)CrossRefGoogle Scholar
  14. 14.
    Scherer, K.: What are emotions? And how can they be measured? Social Science Information 44(4), 695–729 (2005)CrossRefGoogle Scholar
  15. 15.
    Picard, R.W., Vyzas, E., Healey, J.: Toward machine emotional intelligence: analysis of affective physiological state. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 1175–1191 (2001)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Johan Hagelbäck
    • 1
    Email author
  • Olle Hilborn
    • 1
  • Petar Jerčić
    • 1
  • Stefan J. Johansson
    • 1
  • Craig A. Lindley
    • 2
  • Johan Svensson
    • 1
  • Wei Wen
    • 1
  1. 1.Blekinge Institute of TechnologyKarlskronaSweden
  2. 2.Intelligent Sensing LaboratoryCSIROHobartAustralia

Personalised recommendations